

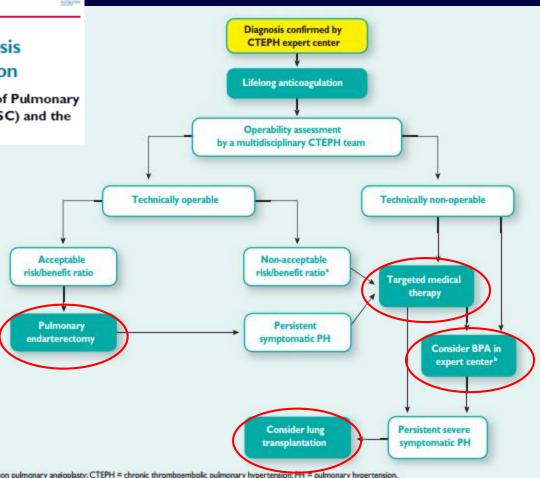
University of Pavia - School of Medicine Foundation I.R.C.C.S. Policlinico "San Matteo" Cardiac Surgery - Intrathoracic Transplantation - Pulmonary Hypertension Pavia, Italy

Prof. Andrea M. D'Armini, M.D.

PULMONARY ENDARTERECTOMY (PEA) AND BALLOON PULMONARY ANGIOPLASTY (BPA): THE PRESENT AND THE FUTURE?

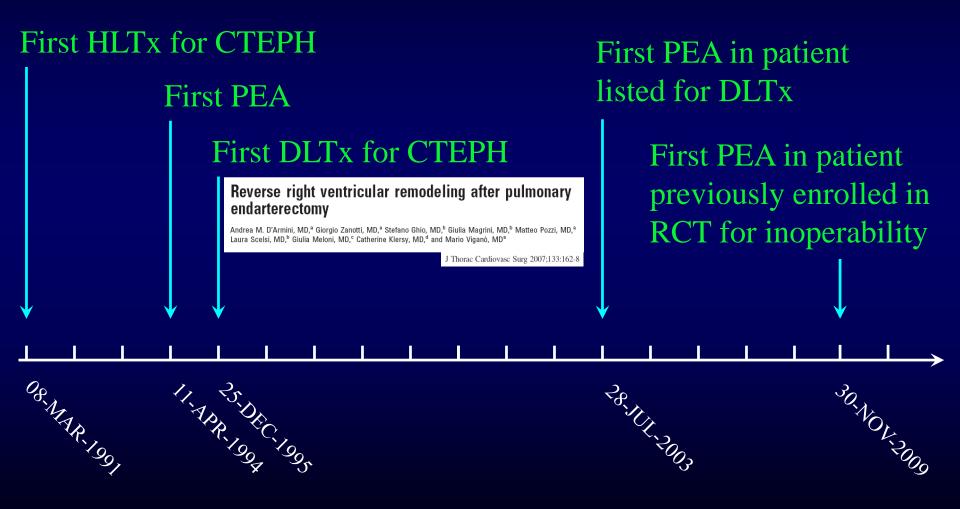
FINANCIAL DISCLOSURE

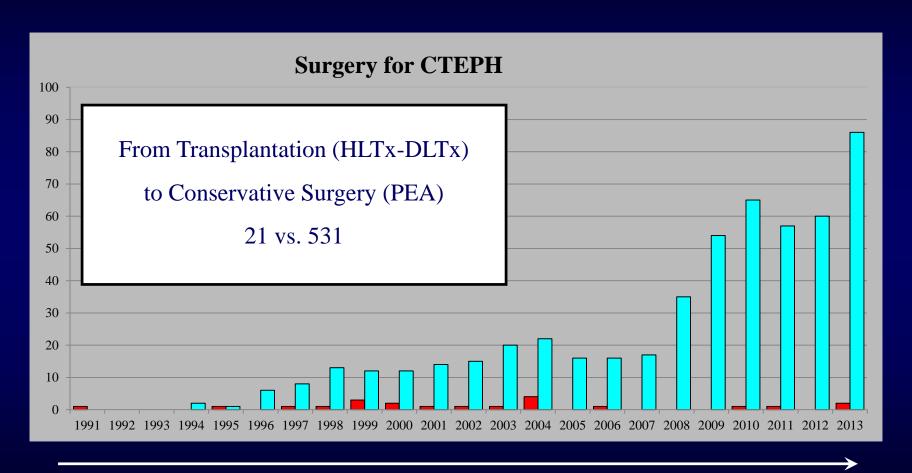
Last three years


Actelion Pharmaceuticals Ltd Bayer HealthCare Merk Sharp Dohme

GUIDELINES FOR CTEPH

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

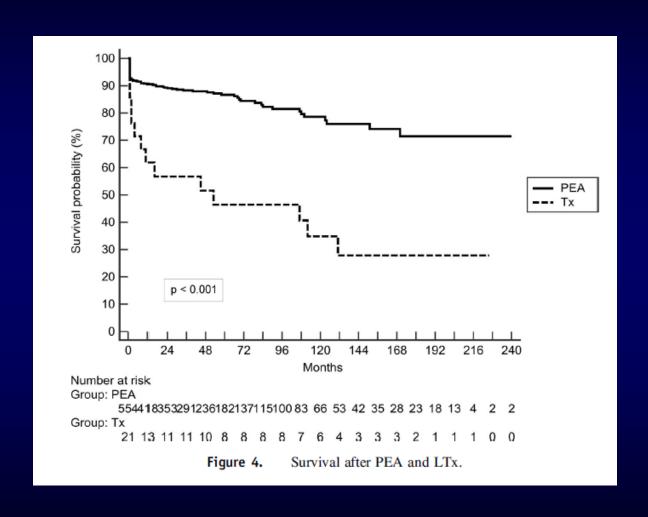

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)



BPA = balloon pulmonary angioplasty; CTEPH = chronic thromboembolic pulmonary hypertension; PH = pulmonary hypertension.

*Technically operable patients with non-acceptable risk/benefit ratio can be considered also for BPA In some centers medical therapy and BPA are initiated concurrently.

PAVIA EXPERIENCE

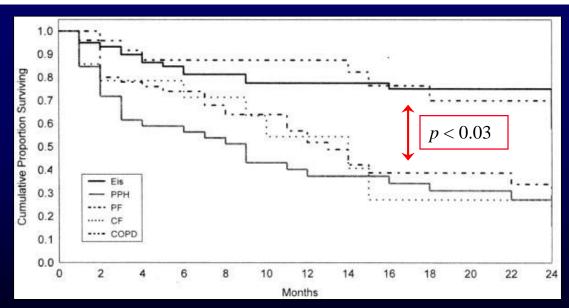

1991 22 yrs 2013

Chronic thromboembolic pulmonary hypertension: From transplantation to distal pulmonary endarterectomy

Andrea M. D'Armini, MD,^a
Marco Morsolini, MD, PhD,^b
Gabriella Mattiucci, MD,^b
Valentina Grazioli, MD,^a
Maurizio Pin, MD,^a Antonio Sciortino, MD,^a
Eloisa Arbustini, MD,^c Claudio Goggi, MD,^a and Mario Viganò, MD^a

The Journal of Heart and Lung Transplantation

J Heart Lung Transplant. 2016 Jan 6. pii: \$1053-2498(16)00024-3



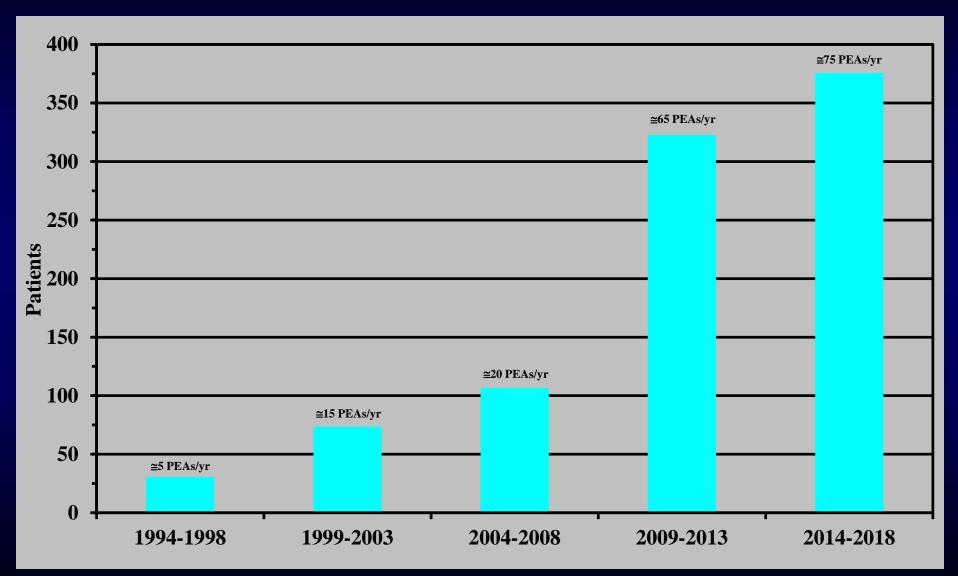
LTx WAITING LIST SURVIVAL

Risk factors for early death in patients awaiting heart-lung or lung transplantation: experience at a single european center

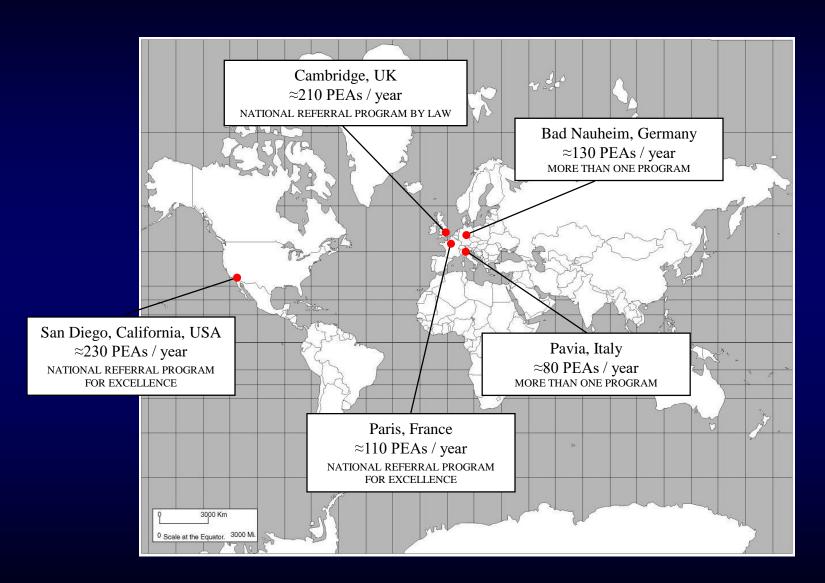
D'Armini AM, Callegari G, Vitulo P, Klersy C, Rinaldi M, Pederzolli C, Grande A, Fracchia C, Viganò M

Transplantation 1998; 66(1):123-7

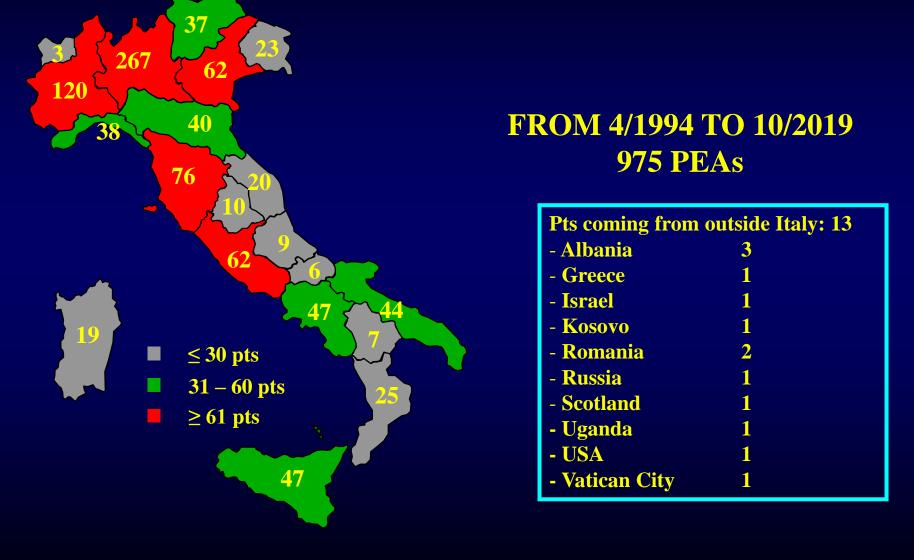
INTRODUCTION

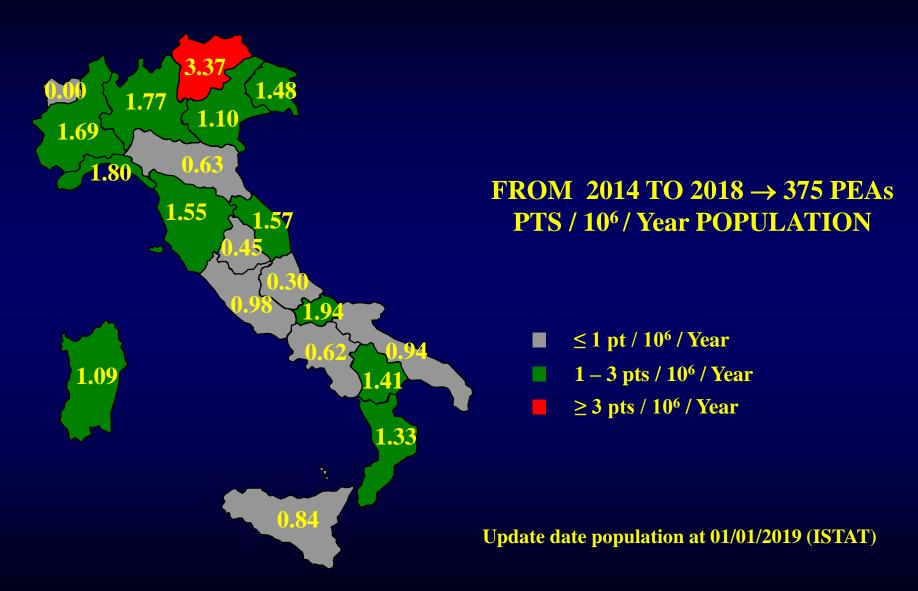

- Chronic thromboembolic pulmonary hypertension (CTEPH) represents the *only* type of pulmonary hypertension surgically treatable, in the majority of cases, without transplant
- This life-saving conservative surgery is called *pulmonary endarterectomy* (*PEA*)

OUR PROGRAM

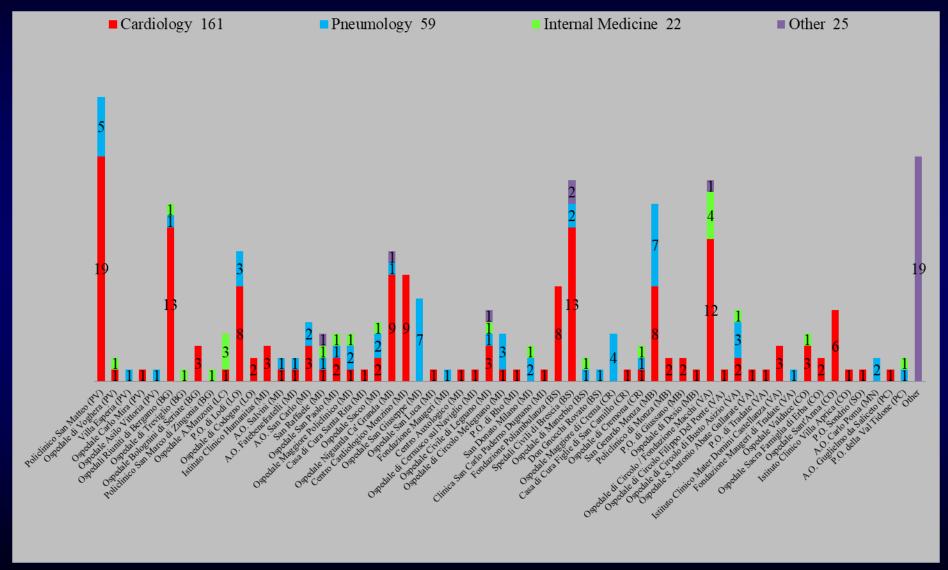

- National referral program
- Begin: April 1994
- October 2019: 975 PEAs performed

NUMBER OF PEAS IN 5-YEAR GROUPS


906 PEAs


MAIN WORLD PEA CENTERS

PATIENTS' REFERRAL



PATIENTS' REFERRAL

PATIENTS' REFERRAL FROM LOMBARDIA

FROM 4/1994 TO 10/2019 - 267 PEAs

CLINIC

- CTEPH patients must be in NYHA functional class III or IV before being evaluated for PEA!
- Since 2003 we have performed PEA in NYHA functional class II patients, given the natural history of CTEPH ...and the good results of PEA...

INDICATIONS FOR SURGERY NYHA FUNCTIONAL CLASS

ACQUIRED CARDIOVASCULAR DISEASE

(J Thorac Cardiovasc Surg 2011;141:702-10)

Surgical management and outcome of patients with chronic

thromboembolic pulmonary hyperte international prospective registry

Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MI Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Sir

Study Design

This prospective registry was designed to include newly diagnosed (≤6 months) consecutive patients with CTEPH in participating centers in Europe and Canada, from February 2007 to January 2009. The registry proto-

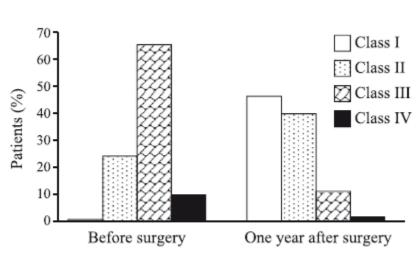
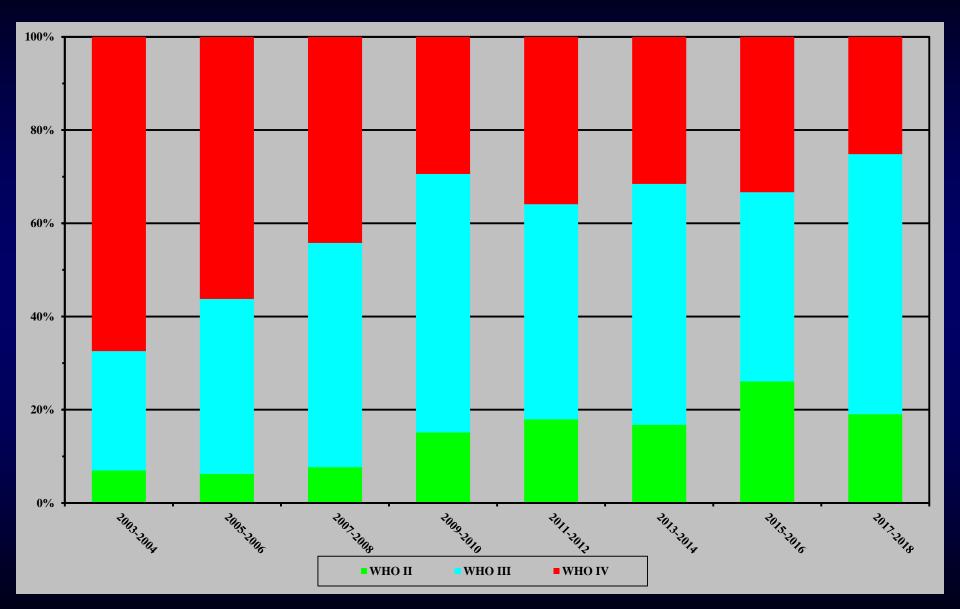
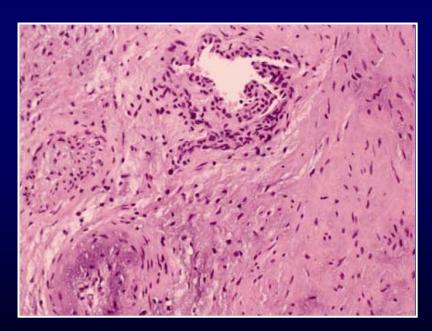



FIGURE 1. NYHA functional class before surgery and within 1 year after surgery (n = 221).

NYHA FUNCTIONAL CLASS

	INTERNATIONAL REGISTRY 2007-2008	PAVIA 2007-2008
II	25%	5%
III	65%	50%
IV	10%	45%

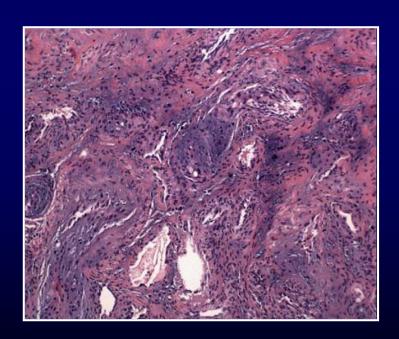
NYHA CLASS DISTRIBUTION 2003-2018


NYHA FUNCTIONAL CLASS

	INTERNATIONAL REGISTRY 2007-2008	PAVIA 2007-2008	PAVIA 2017-2018
II	25%	5%	19%
III	65%	50%	56%
IV	10%	45%	25%

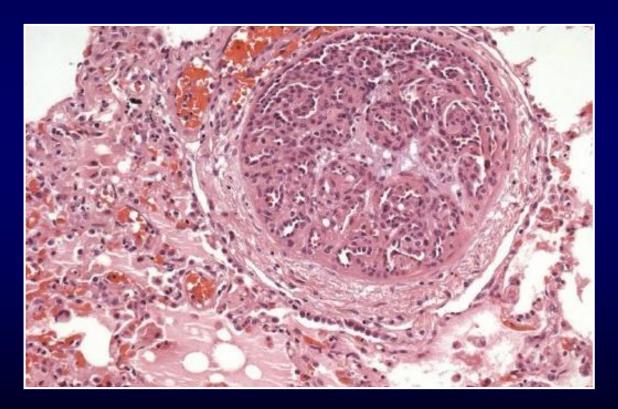
PATHOPHYSIOLOGY

ACCORDING TO THE LENGTH OF THE DISEASE

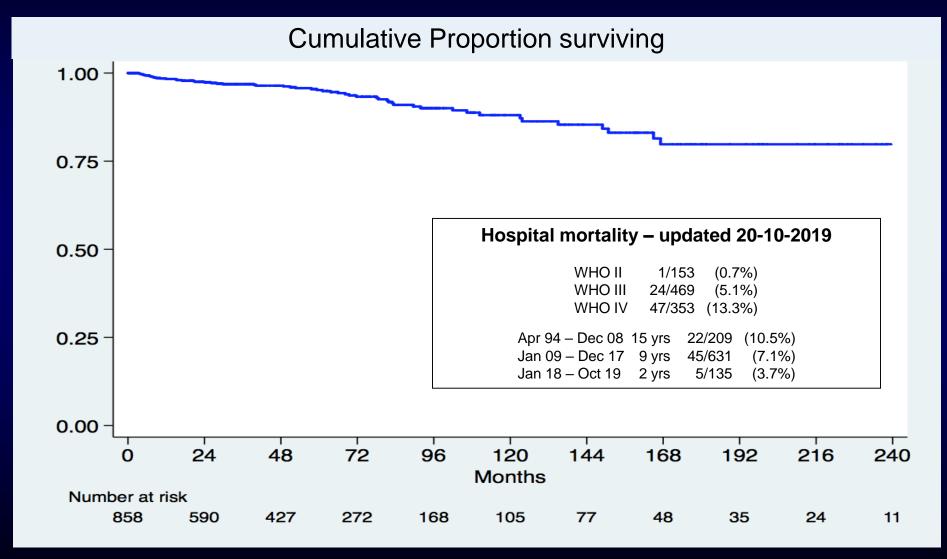

1. Hypertensive remodeling of the patent pulmonary vascular bed (*Eisenmenger-like*) due to volume and pressure overload

PATHOPHYSIOLOGY

ACCORDING TO THE LENGTH OF THE DISEASE


2. Chronic arteriopathy of the obstructed branches with *calcifications* and possible *retraction* of the distal vessels

PATHOPHYSIOLOGY


ACCORDING TO THE LENGTH OF THE DISEASE

3. Plexiform lesions stemming from the capillary bed

CUMULATIVE PROPORTION SURVIVING

OF 975 PEAs

HEMODYNAMIC

- Pulmonary hypertension (mPAP \geq 25 mmHg)
- Causing low cardiac output

• Resulting in calculated pulmonary vascular resistances (PVR) > 300 dyne*sec*cm⁻⁵

ACQUIRED CARDIOVASCULAR DISEASE

Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry

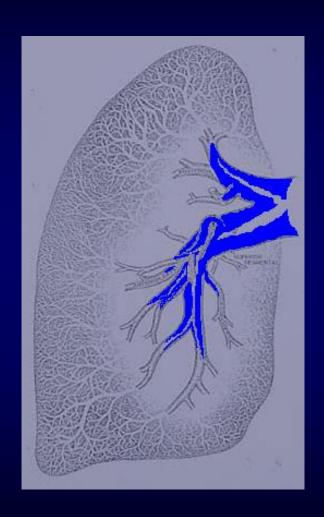
Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav Lindner, MD,^c Andrea D'Armini, MD,^d Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MD,^g Walter Klepetko, MD,^h Marion Delcroix, MD,^f Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Simonneau, MD,ⁱ and Philippe Dartevelle, MD^j

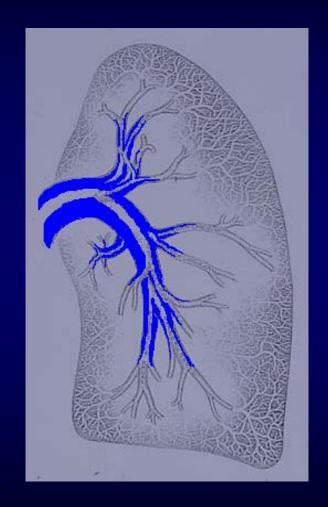
J Thorac Cardiovasc Surg. 2011 Mar;141(3):702-10

		In-hospital deaths	Deaths at 1 year		
		n (%)	n (%)		
PVR (dyn.s.cm ⁻⁵), n = 340					
<400	n = 48	0 (0%)*	1 (2.1%) NS		
400-800	n = 141	4 (2.8%)*	8 (5.7%) NS		
800-1200	n = 104	6 (5.8%) NS	9 (8.7%) NS		
> 1200	n = 47	5 (10.6%)†	6 (12. 8%)†		
NYHA functional class, n = 386 I and II	n = 75	0‡	V NIC. A		
III	n = 75 n = 262	12 (4.6%)*			
IV	n = 49	6 (12.2%)†	61		
History of confirmed pulmonary embolism,		D/NOT/COOK!	20 A 20		
Yes	n = 308	12 (3.9%) NS	19 (6.2%)		
No	n = 78	6 (7.7%)†	PVR (dyn.s.cm ⁻⁵), $n = 340$		
Presence of an inferior vena cava filter, n =			PVK (dyn.s.cm), $n = 340$		
Yes	n = 42	_	<100	n — 10	0 (00/
No Circulatory arrest duration, n = 378	n = 256	_	<400	n = 48	0 (0%
< 20 min	n = 52	2 (3.8%) NS	400, 800	n — 1//1	4 (2.9)
21–40 min	n = 32 n = 185	5 (2.7%) NS	400-800	n = 141	4 (2.89
1–60 min	n = 103	8 (7.8%) NS	900 1200	n — 104	6 (5 0)
> 60 min	n = 38	3 (7.9%)†	800-1200	n = 104	6 (5.8)
Presence of coronary disease or myocardial infarction, n = 276			> 1200	n — 47	5 (10)
Yes	n = 40	4 (10.0%)*	> 1200	n = 47	5 (10.6
No	n = 236	5 (2.1%)†	NVIIA functional along n	206	
Presence of thrombophilic disorder, $n = 254$			NYHA functional class, $n = 1$	380	
Yes	n = 141	7 (5.0%) NS	I and II	75	0-
No	n = 113	2 (1.8%)†	I and II	n = 75	0:
PVR, Pulmonary vascular resistance; NS, not significantly with \dagger , $\pm P < .005$ compared with \dagger . NS		sociation. Values are presented as numbers of patients est)		n — 262	12 (4 6)
			III	n = 262	12 (4.6)
			IV	n - 40	6/10/
			1 V	n = 49	6 (12.2

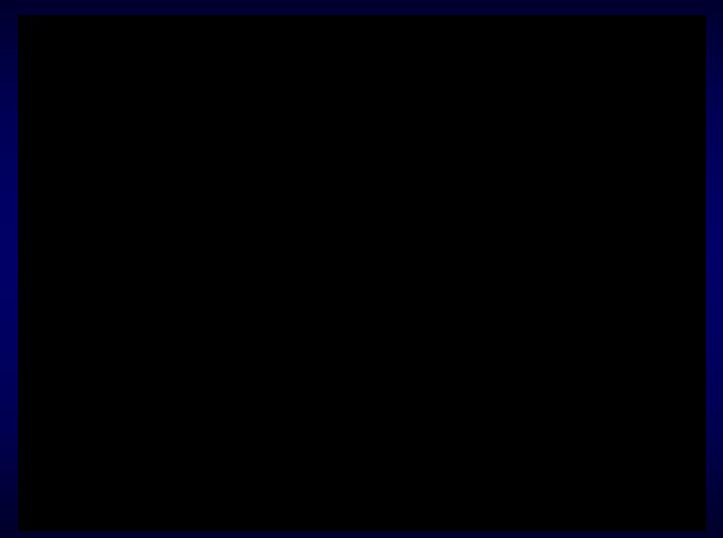
J Thorac Cardiovasc Surg. 2011 Mar;141(3):702-10

The changing landscape of chronic thromboembolic pulmonary hypertension management


Michael Madani1, Takeshi Ogo2 and Gérald Simonneau3,4,5

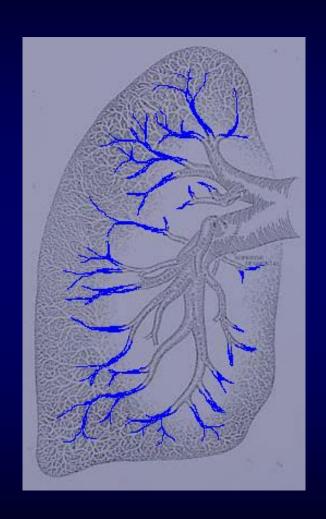

Eur Respir Rev. 2017 Dec 20;26(146)

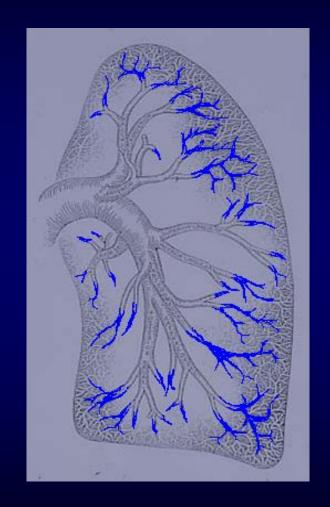
Measurement of a patient's haemodynamic status by right heart catheterisation is also an important part of risk assessment [1, 2]. Although high pre-operative PVR (>1000-1200 dyn·s·cm⁻⁵) is correlated with an increased risk of post-operative mortality [13, 14, 35, 36], patients with a high PVR are in a position to gain the most benefit from surgery, as they often show the greatest relative improvement in PVR after the procedure [13, 14]. Therefore, high PVR should not necessarily be considered a contraindication for pulmonary endarterectomy [14, 37]. High pre-operative PVR in conjunction with comparatively low levels of surgically accessible thrombotic material is indicative of significant microvascular disease [36, 38].


Eur Respir Rev. 2017 Dec 20;26(146)

PROXIMAL LESIONS

TYPICAL "OLD" SURGICAL SPECIMENS (JAMIESON 1)




E.L. – 38 yrs M – Dec 1999 – PEA #42 mPAP 43 → 20 (-53%) CO 3.3 → 6.9 (+109%) PVR 994 → 220 (-78%)

P.A. - 66 yrs M - Jun 2001 - PEA #60 mPAP 50 → 25 (-50%) CO 2.6 → 4.4 (+69%) PVR 1385 → 364 (-74%)

DISTAL LESIONS

EVOLVING SURGICAL TECHIQUE

Morsolini et al

Acquired Cardiovascular Disease

Evolving surgical techniques for pulmonary endarterectomy according to the changing features of chronic thromboembolic pulmonary hypertension patients during 17-year single-center experience

Marco Morsolini, MD,^{a,b} Salvatore Nicolardi, MD,^{a,b} Elisa Milanesi, MD,^c Eleonora Sarchi, MD,^d Gabriella Mattiucci, MD,^a Catherine Klersy, MD, MSc,^e and Andrea Maria D'Armini, MD^a

(J Thorac Cardiovasc Surg 2012;144:100-7)

SURGICAL PROTOCOL

	Original San Diego protocol	Actual Pavia protocol
Aortic clamp	Yes	No
Cardioplegia	Yes	No
Hypothermia	Deep (18°C)	Moderate (24°C)
Circulatory arrest	A single (20 minutes) period of circulatory arrest for each side (with a maximum of a third)	Intermittent short periods of circulatory arrest (≈7-10 minutes) followed by short re-perfusion periods (≈5-7 minutes)
Total arrest time	Maximum 60 minutes	Maximum 180 minutes

Since 15-10-2009 (#245)

TAILORED AND LESS INVASIVE SURGERY

SURGICAL PROTOCOL

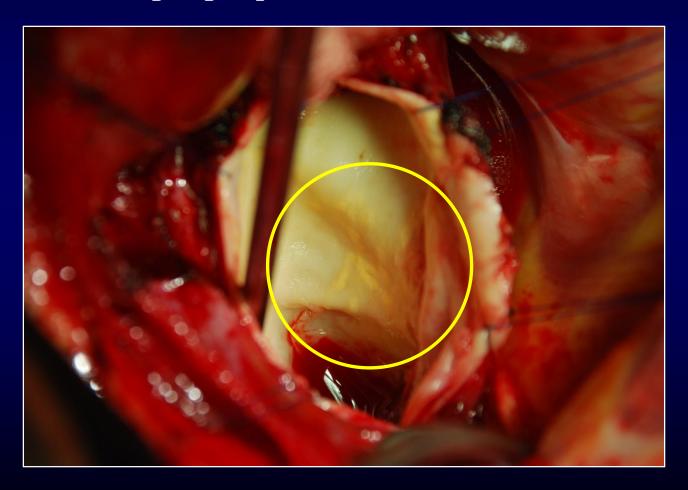
More than 730 PEAs with this technique

JAMIESON TYPE1 vs. TYPE2 vs. TYPE3

L.M.E.L. - 65 yrs M - Oct 2004 - PE mPAP 39 \rightarrow 19 (-51%) CO 4.4 \rightarrow 5.4 (+23%) PVR 665 \rightarrow 222 (-66%)

DHCA 81 min

G.A.C. - 52 yrs F - Jul 2003 - PEA mPAP 48 \rightarrow 27 (-44% CO 2.1 \rightarrow 4.2 (+100 PVR 1638 \rightarrow 381 (-77%



B.A. - 43 yrs F - May 2009 - PEA #233 mPAP 49 → 19 (-61%) CO 3.3 → 5.0 (+52%) PVR 1067 → 224 (-79%)

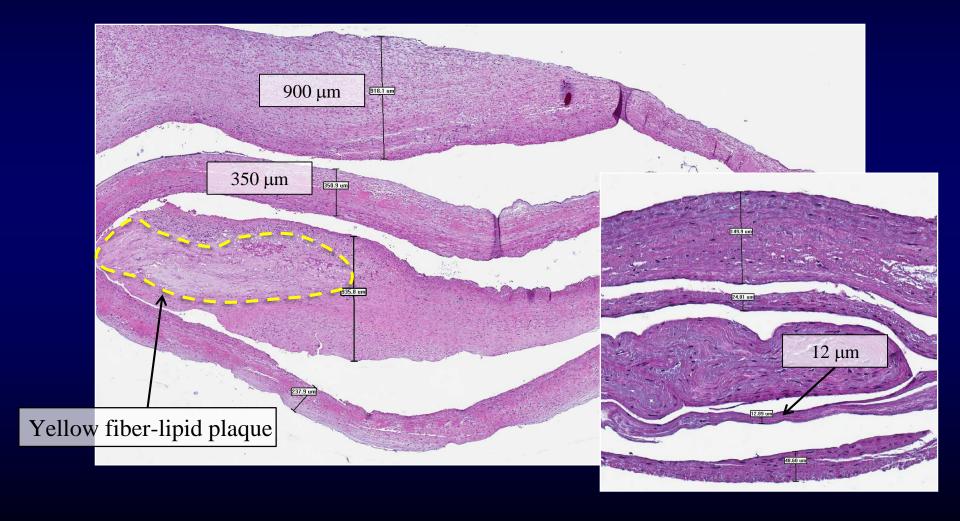
DHCA, deep hypothermic circulatory arrest;

MHCA, moderate hypothermic circulatory arrest.

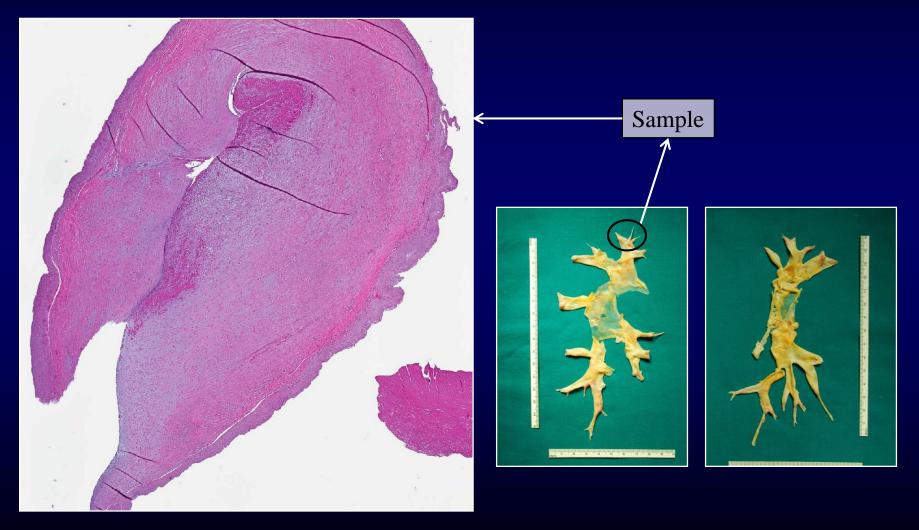
The correct arterial dissection plane Yellow-fibro-lipid plaques included into the removed cast

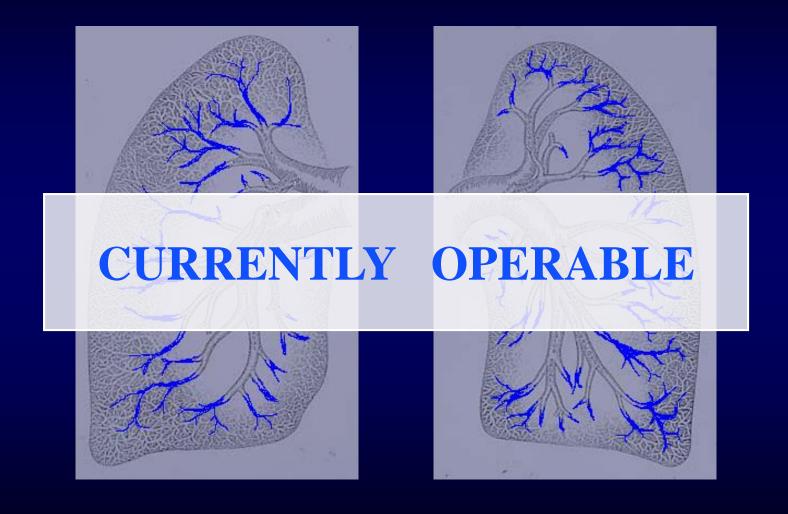
REVERSE ARIADNE'S THREAD

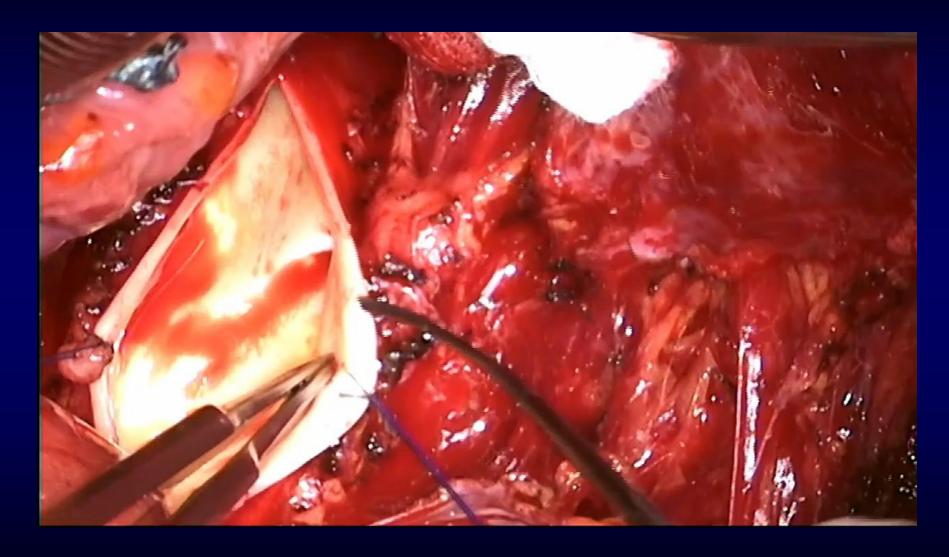
The correct arterial dissection plane Yellow-fibro-lipid plaques included into the removed cast



Proximal dissection for the clearance of distal obstructions

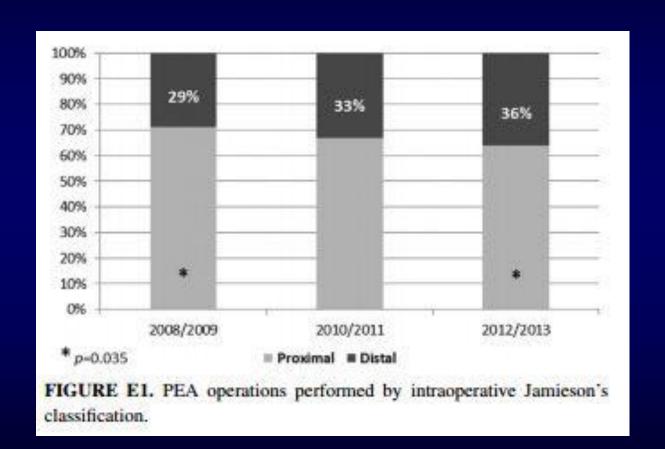



Proximal dissection for the clearance of distal obstructions


Proximal dissection for the clearance of distal obstructions

UNIVERSITY OF PAVIA SCHOOL OF MEDICINE - SAN MATTEO HOSPITAL - PAVIA - ITALY

EVOLVING SURGICAL TECHNIQUE – J3



D'Armini et al

Acquired Cardiovascular Disease

Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension

Andrea M. D'Armini, MD, a,b Marco Morsolini, MD, PhD, Gabriella Mattiucci, MD, a,b Valentina Grazioli, MD, Adele Valentini, MD, Giuseppe Silvaggio, MD, Catherine Klersy, MD, MSc, and Roberto Dore, MD (J Thorac Cardiovasc Surg 2014;148:1005-12)

			P
	Proximal	Distal	value
Bilateral PEA (n)	192 (86.9)	95 (86.4)	1.000
Associated procedures (n)	38 (17.2)	19 (17.3)	1.000
Total CPB time (min)	338 ± 81 (327-348)	361 ± 64 (349-373)	.00:
Hypothermia (°C)	24.0 ± 0.9 (23.9-24.1)	23.7 ± 1.0 (23.5-23.8)	.003
Total HCA time (min)	$84 \pm 32 (80-89)$	102 ± 28 (97-107)	<.00
PAO ₂ /Fio ₂ 6 h	284 ± 91 (271-296)	280 ± 112 (259-301)	.758
MV duration (d)	2 (1-3)	2 (1-4)	.565
ICU stay (d)	4 (3-7)	4 (3-8)	.962
Postoperative hospital stay (d)	13 (10-16)	13 (11-17)	.54
		Risk difference	
	Risk	(95% CI)	P value
Univariate analysis	8		
Hospital mortalit		1.8 (-4.2 to 7.9)	.647
Proximal	6.3%		
Distal	8.1%		
Lung reperfusion	Seed Report page	-0.5 (-4.4 to 3.4)	1.000
Proximal	3.2%		
Distal	2.7%		
Tracheostomy	95.0000 3	-1.9 (-7.8 to 3.9)	.662
Proximal	8.3%		
Distal	6.4%		
Neurologic even	t -	-4.7 (-10.6 to 1.1)	.209
Proximal	10.2%	november 50000 mps could?	
transient 13	/22		
permanent 9	9/22		
Distal	5.5%		
transient 5/6	6		
permanent 1	1/6		

TABLE 3. Hemodyna endarterectomy	mic time course a	fter pulmonary
	Proximal	Distal
Mean pulmonary arterial p	ressure (mm Hg)	
Preoperative	44 ± 10	46 ± 11
At discharge	22 ± 7	24 ± 6
3-mo follow-up	24 ± 9	25 ± 7
12-mo follow-up	23 ± 7	24 ± 8
P value*	<.001	<.001
PVR (dyne·s·cm ⁻⁵)		
Preoperative	876 ± 392	926 ± 337
At discharge	251 ± 146	295 ± 161
3-mo follow-up	270 ± 175	300 ± 139
12-mo follow-up	243 ± 115	300 ± 224
P value*	<.001	<.001
Cardiac output (L/min)		
Preoperative	3.9 ± 1.3	3.7 ± 1.2
At discharge	5.0 ± 1.2	4.7 ± 1.2
3-mo follow-up	5.2 ± 1.1	5.0 ± 1.2
12-mo follow-up	5.0 ± 1.1	4.7 ± 1.0
P value*	<.001	<.001

PVR, Pulmonary vascular resistance. *Each time point versus preoperative. Test of interaction: P = .975 (mean pulmonary arterial pressure); P = .777 (PVR); P = .825 (cardiac output).

TABLE 4. Partial pressure of oxygen in arterial blood, modified Bruce exercise test, and 6-minute walking distance time course after pulmonary endarterectomy

<u> </u>	Proximal	Distal
Arterial partial pressure of	of oxygen (mm Hg)	
Preoperative	65 ± 12	66 ± 11
3-mo follow-up	82 ± 13	80 ± 11
12-mo follow-up	80 ± 11	80 ± 11
P value*	<.001	<.001
Modified Bruce exercise	test (m)	
Preoperative	51 (0-143)	52 (0-102)
3-mo follow-up	495 (182-658)	435 (143-586)
12-mo follow-up	520 (261-709)	474 (225-620)
P value*	<.001	<.001
6-min walking distance (m)	
Preoperative	277 ± 118	289 ± 112
3-mo follow-up	391 ± 118	398 ± 107
12-mo follow-up	389 ± 118	396 ± 112
P value*	<.001	<.001

^{*}Each time point versus preoperative. Test of interaction: P = .317 (partial pressure of oxygen in arterial blood); P = .205 (modified Bruce exercise test); P = .962 (6-min walking distance).

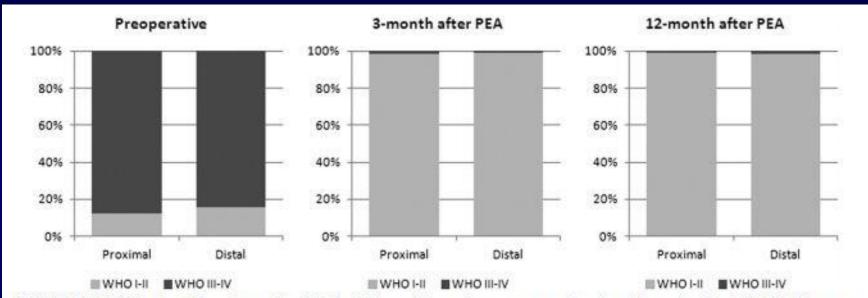
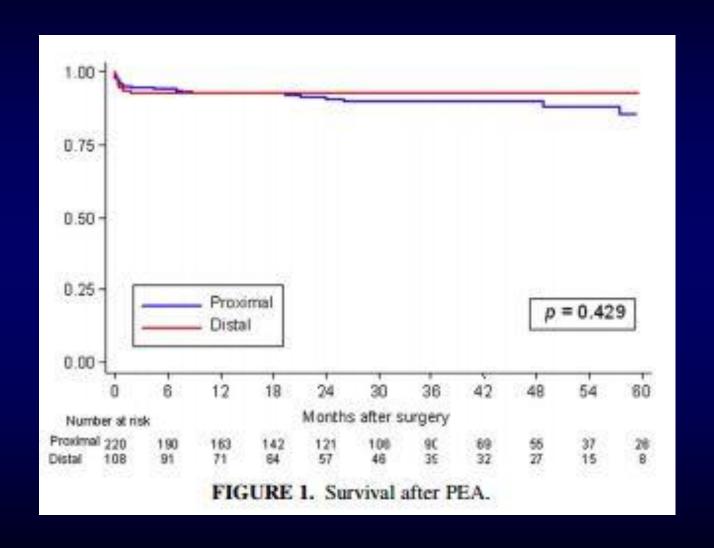
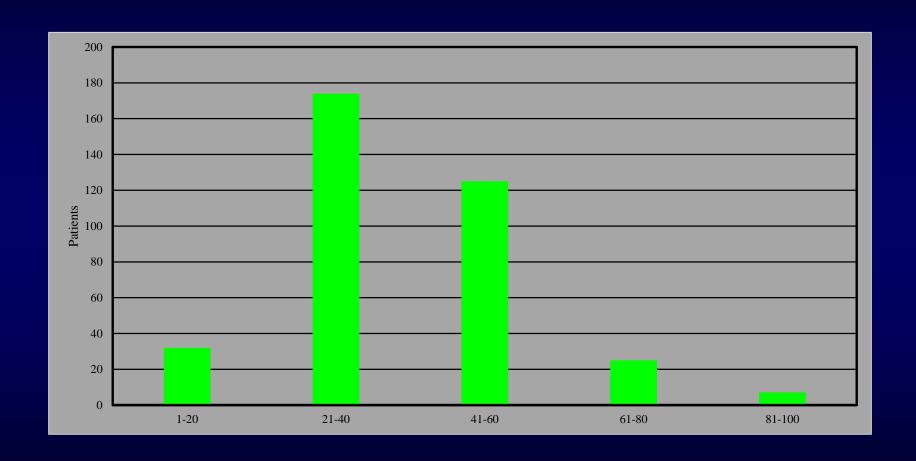



FIGURE E2. WHO functional class changes after PEA. $P \le .001$ at each time point versus preoperative. Test of interaction: P = .327. PEA, Pulmonary endarterectomy; WHO, World Health Organization.

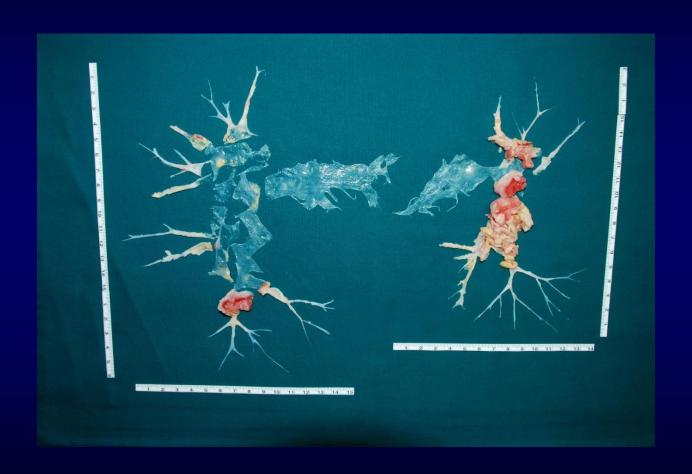

PLANTY vs. SCARSE CTE OCCLUSIONS

GROUPED BY REOPENED BRANCHES

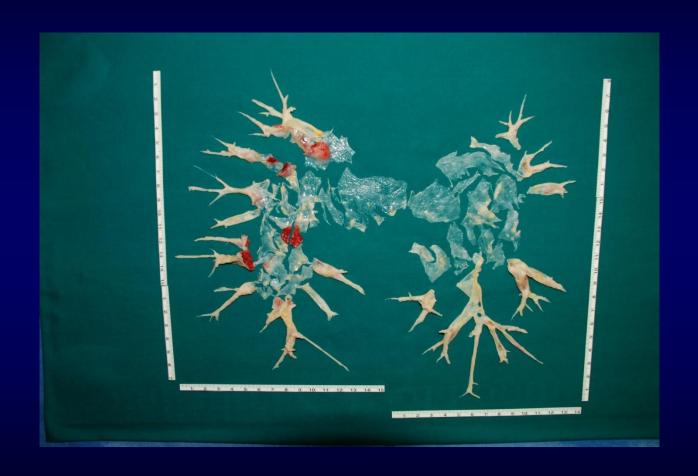
344 PEA

REOPENED BRANCHES AND TCA

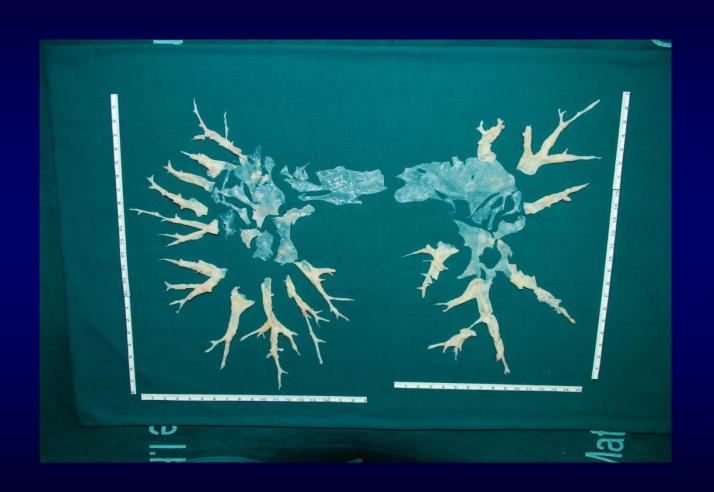
	N°	Mean	SD	Min	P25	P50	P75	Max
Reopened Branches	344	38.7	± 15.7	7	28	37	48	100
TCA (min)	344	93.5	± 26.9	0	77	93	113	162


ASSOCIATION OF HEMODYNAMIC AND PAO2 DATA AT 3 MONTHS AND THE NUMBER OF REOPENED BRANCHES

		Number of Reop	ened branches subgr	Number of R	Reopened branches	(continuous)		
Outcome measure at 3 months	(a) Branches reopened 7-26	(b) Branches reopened 27-41	(c) Branches reopened 42-100	Univariable Model P value*	Multivariable Model P value**	Sperman's rho	Univariable Model P value	Multivariable Model P value**
PVR (dyne/sec/cm ⁻⁵)	315 ± 163	277 ± 148	232 ± 105	< 0.001 a vs b 0.35 a vs c 0.001 b vs c 0.06	0.045 a vs b 0.41 a vs c 0.040 b vs c 0.64	- 0.25	< 0.001	< 0.001
CO (l/min)	5.1 ± 1.1	5.0 ± 1.2	5.2 ± 1.1	0.31	0.33	0.07	0.37	0.83
CI (l/min/m²)	2.8 ± 0.5	2.7 ± 0.5	2.8 ± 0.5	0.34	0.29	0.05	0.43	0.92
mPAP (mmHg)	26 ± 9	24 ± 8	22 ± 6	0.009 a vs b 0.25 a vs c 0.007 b vs c 0.46	0.027 a vs b 0.15 a vs c 0.022 b vs c 1.00	- 0.18	<0.001	<0.001
PAO2 (mmHg)	77.4 ± 13.1	79.7± 12.3	82.2 ± 11.3	0.06	0.35	0.17	0.003	0.05

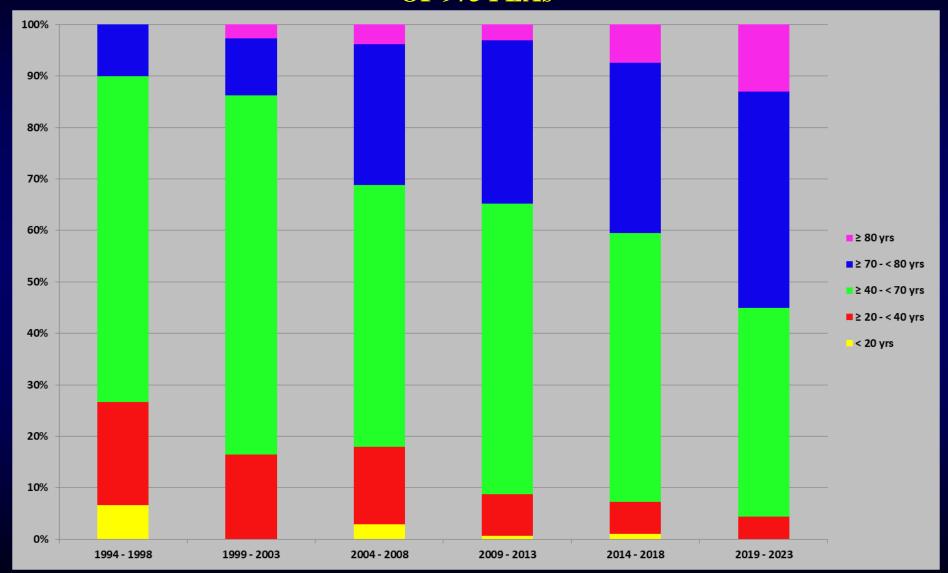

ASSOCIATION OF FUNCTIONAL DATA AT 3 MONTHS AND THE NUMBER OF REOPENED BRANCHES

		Number of R	eopened branches	subgroups (tertiles)		Number of Reopened branches (continuous		
	(a) Branches reopened 7-26	(b) Branches reopened 27-41	(c) Branches reopened 42-100	Univariable Model P value [*]	Multivariable Model P value**	Mean ± SD	Univariable Model P value*	Multivariable Model P value**
WHO class I/II III/IV	5 (9%)	4 (4%)	0 (0%)	0.000	0.17	24 ± 7		
6 mWD (m) ≥400 <400	19 (38%)	42 (45%)	71 (64%)	0.003 a vs b 1.00 a vs c 0.009 b vs c 0.023	0.036 a vs b 1.00 a vs c 0.06 b vs c 0.20	43 ± 16 37 ± 15	0.004	0.013
Bruce (m) ≥400 <400	18 (43%)	39 (48%)	76 (72%)	<0.000 a vs b 1.00 a vs c 0.003 b vs c 0.003	0.021 a vs b 1.00 a vs c 0.047 b vs c 0.083	44 ± 16 36 ± 15	<0.001	0.003


SURGICAL SPECIMENTS – J1

SURGICAL SPECIMENTS – J2

SURGICAL SPECIMENTS – J3


RESULTS

Our study shows a *clear correlation* between the *number* of reopened pulmonary artery branches and hemodynamic values and functional data (pO2, NYHA functional class, 6mwt and modified Bruce test) already at 3 months

CONCLUSIONS

In our hands a *longer TCA time* allows the surgeon to explore *all* the pulmonary vascular bed, find unexpected chronic thromboembolic material and clean more branches even in more complex clinical conditions as well as in distal vassels

AGE OF 975 PEAs

UNIVERSITY OF PAVIA SCHOOL OF MEDICINE - SAN MATTEO HOSPITAL - PAVIA - ITALY

PAVIA CTEPH PROGRAM

January, 1^{st} – December, 31^{st} 2018 \rightarrow 462

NewEvaluations (215 pts)

CTEPH-PEA FUP (245 pts)

PAS-PEA FUP (2 pts)

CONFIRMED (121 pts - 56%)

- PROXIMAL LESIONS (115 pts)
 - 66 PEAs (3 pts evaluated in 2017)
- 13 waiting for PEA
- 10 refused evaluation for PEA
- 3 refused PEA
- 19 with severe co-morbidities (1 pt evaluated in 2017)
- 3 died before evaluation or before PEA
- 1 complete occlusion with vessel retraction
- 2 asyntomatic CTED
- 2 bridge to candidacy

95%

+ comorbidity 79%

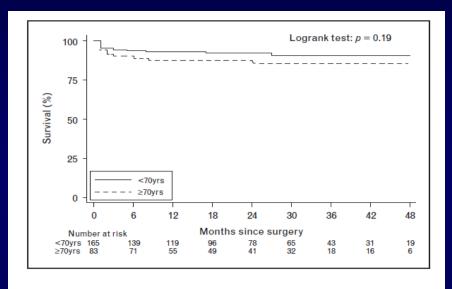
69% + refused

OPERABILITY RATE the cnically

• BPA program (6 pts)

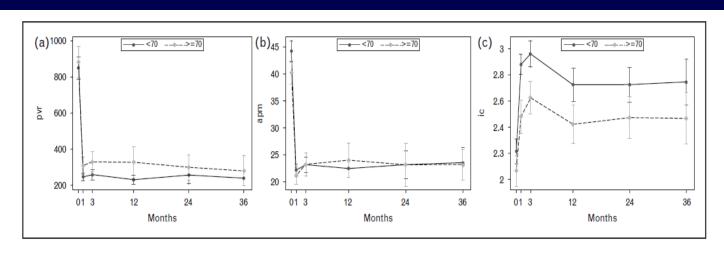
- 1 waiting for BPA
- 5 too early for BPA → Riociguat

OTHER DIAGNOSIS (94 pts - 44%)

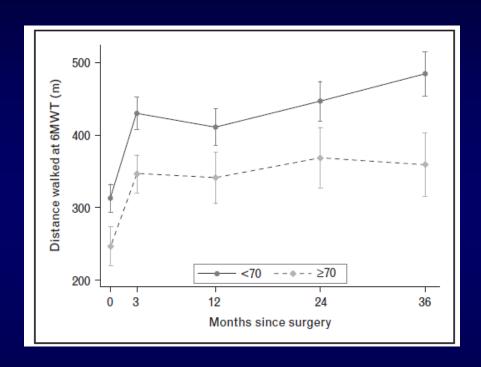

- RECENT APE (23 pts)
- 22 medical therapy 1 embolectomy
- PREVIOUS APE WITHOUT SIGNS (7 pts)
- 7 medical therapy
- APE OVER CTE LESIONS (3 pts)
- 3 3-month m.t.→new evaluation
- MINIMAL CTE LESIONS WITHOUT/LOW PH (16 pts)
 - 16 medical therapy
- PULMONARY ARTERY SARCOMA (5 pts)
- 4 inoperable 1 refused evaluation or PEA
- PULMONARY ARTERY ANEURYSM (3 pts)
- 2 medical therapy 1 interventional therapy
- MISCELLANEOUS (37 pts)

ELDERLY PATIENTS

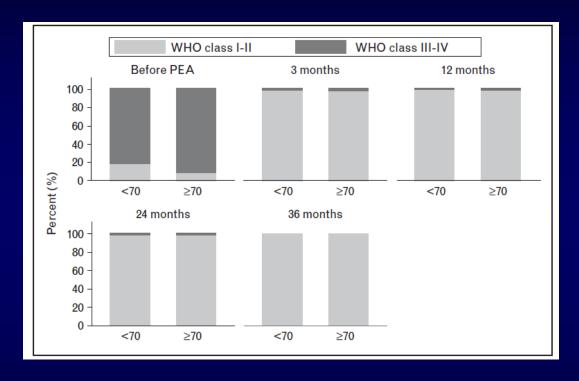
Pulmonary endarterectomy in the elderly: safety, efficacy and risk factors


Nicola Vistarini^a, Marco Morsolini^a, Catherine Klersy^b, Gabriella Mattiucci^a, Valentina Grazioli^a, Maurizio Pin^a, Stefano Ghio^c and Andrea Maria D'Armini^a

AGE

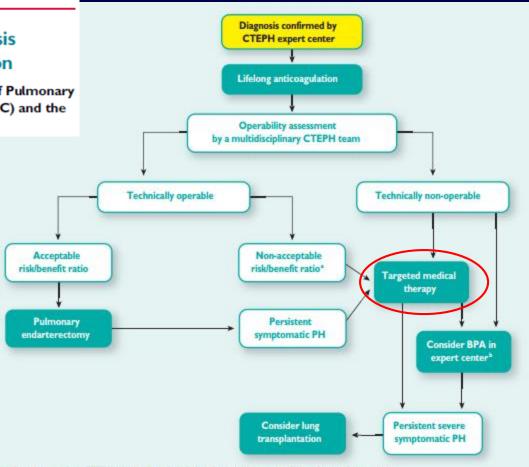

Kaplan-Meier curves for survival after pulmonary endarterectomy, dichotomized by age.

AGE



Hemodynamic evaluations over time in the two study populations. (a) Pulmonary vascular resistances (pvr); (b) pulmonary arterial pressure (apm); (c) cardiac output (ic).

AGE


ELDERLY PATIENTS

TARGETED MEDICAL THERAPY IN THE GUIDELINES FOR CTEPH

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

BPA = balloon pulmonary angioplasty; CTEPH = chronic thromboembolic pulmonary hypertension; PH = pulmonary hypertension.

*Technically operable patients with non-acceptable risk/benefit ratio can be considered also for BPA.

Yen some centers medical therapy and BPA are initiated concurrently.

BENEFIT STUDY

CLINICAL RESEARCH Clinical Trials

Bosentan for Treatment of Inoperable Chronic Thromboembolic Pulmonary Hypertension

BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a Randomized, Placebo-Controlled Trial

Xavier Jaïs, MD,* Andrea M. D'Armini, MD,† Pavel Jansa, MD,‡ Adam Torbicki, MD,§ Marion Delcroix, MD,|| Hossein A. Ghofrani, MD,¶ Marius M. Hoeper, MD,# Irene M. Lang, MD,** Eckhard Mayer, MD,†† Joanna Pepke-Zaba, MD,‡‡ Loïc Perchenet, PhD,§§ Adele Morganti, MSc,§§ Gérald Simonneau, MD,* Lewis J. Rubin, MD,||| for the BENEFiT Study Group

Clamart, France; Pavia, Italy; Prague, Czech Republic; Warsaw, Poland; Leuven, Belgium; Giessen, Hannover, and Mainz, Germany; Vienna, Austria; Cambridge, United Kingdom; Allschwil, Switzerland; and La Jolla, California

J Am Coll Cardiol 2008 Dec16;52(25):2127-34

CHEST STUDY

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Hossein-Ardeschir Ghofrani, M.D., Andrea M. D'Armini, M.D., Friedrich Grimminger, M.D., Marius M. Hoeper, M.D., Pavel Jansa, M.D., Nick H. Kim, M.D., Eckhard Mayer, M.D., Gerald Simonneau, M.D., Martin R. Wilkins, M.D., Arno Fritsch, Ph.D., Dieter Neuser, M.D., Gerrit Weimann, M.D., and Chen Wang, M.D., for the CHEST-1 Study Group*

N Engl J Med 2013 Jul25;369(4):319-29

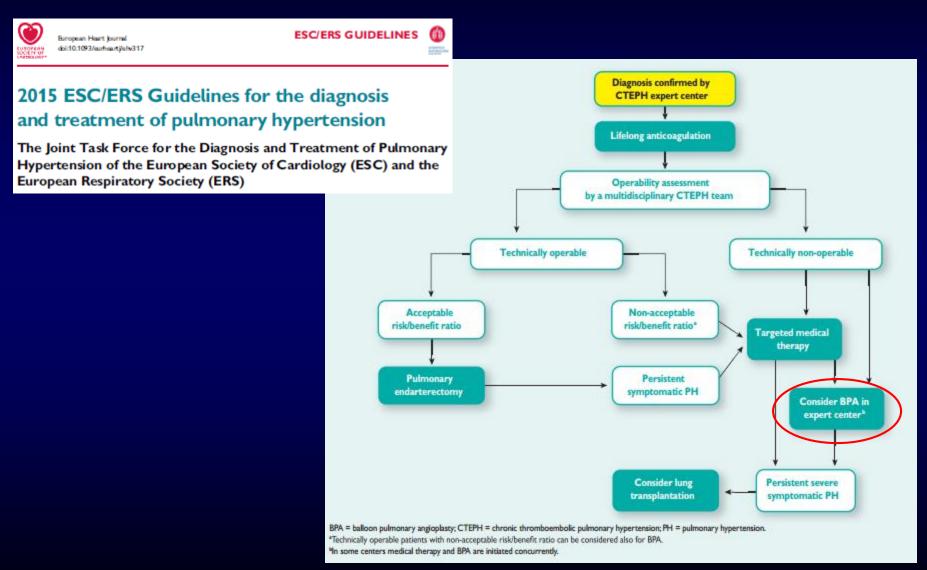
CHEST STUDY

ORIGINAL ARTICLE
PULMONARY VASCULAR DISEASES

Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2)

Gérald Simonneau¹, Andrea M. D'Armini², Hossein-Ardeschir Ghofrani^{3,4}, Friedrich Grimminger³, Marius M. Hoeper⁵, Pavel Jansa⁶, Nick H. Kim⁷, Chen Wang⁸, Martin R. Wilkins⁹, Arno Fritsch¹⁰, Neil Davie¹⁰, Pablo Colorado¹¹ and Eckhard Mayer¹²

Eur Respir J 2015 May;45(5):1293-302


MERIT-1 STUDY

Macitentan for the treatment of inoperable chronic thromboembolic pulmonary hypertension (MERIT-1): results from the multicentre, phase 2, randomised, double-blind, placebo-controlled study

Hossein-Ardeschir Ghofrani, Gérald Simonneau, Andrea M D'Armini, Peter Fedullo, Luke S Howard, Xavier Jaïs, David P Jenkins, Zhi-Cheng Jing, Michael M Madani, Nicolas Martin, Eckhard Mayer, Kelly Papadakis, Dominik Richard, Nick H Kim, on behalf of the MERIT study investigators*

Lancet Respir Med 2017 Oct;5(10):785-94

BPA IN THE GUIDELINES FOR CTEPH

Pulmonary Vascular Disease

Novel Angiographic Classification of Each Vascular Lesion in Chronic Thromboembolic Pulmonary Hypertension Based on Selective Angiogram and Results of Balloon Pulmonary Angioplasty

Takashi Kawakami, MD, PhD; Aiko Ogawa, MD, PhD; Katsumasa Miyaji, MD, PhD; Hiroki Mizoguchi, MD, PhD; Hiroto Shimokawahara, MD, PhD; Takanori Naito, MD; Takashi Oka, MD; Kei Yunoki, MD, PhD; Mitsuru Munemasa, MD, PhD; Hiromi Matsubara, MD, PhD

(Circ Cardiovasc Interv. 2016;9:e003318. DOI: 10.1161/CIRCINTERVENTIONS.115.003318.)

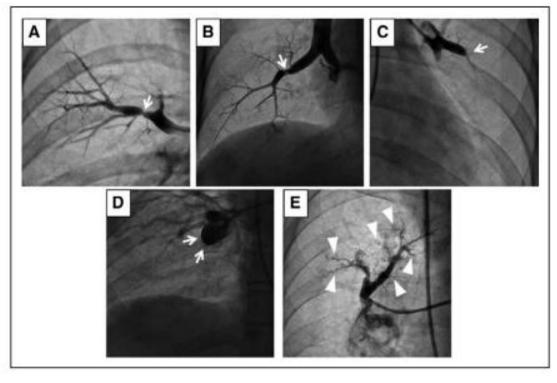


Figure 1. Angiographic classification of lesion morphology based on the lesion opacity and the blood flow distal to the lesion. A, Ring-like stenosis lesion. B, Web lesion. C, Subtotal lesion. D, Total occlusion lesion. E, Tortuous lesion. Type A-D lesions are located proximal to the subsegmental pulmonary artery, namely, the segmental and subsegmental arteries. Type E lesions are located distal to the subsegmental artery.

(Circ Cardiovasc Interv. 2016;9:e003318. DOI: 10.1161/CIRCINTERVENTIONS.115.003318.)

Table 3. Numbers and Distribution of Pulmonary Thromboembolic Lesions

Lesion Type	A	В	С	D	E
Description of Lesion Type	Ring-Like Stenosis	Web	Subtotal	Total Occlusion	Tortuous
Number, n	248	1235 342		67	44
Bifurcation lesion, n (%)	248 (100)	1092 (88.4)	301 (88.0)	61 (91.0)	0 (0)
Distribution (upper/middle or li	ngular/lower)				
Right lung, n	103/7/46	215/172/367	64/42/118	6/16/24	5/3/9
Left lung, n	29/0/63	61/22/398	13/6/99	0/2/19	6/1/20
QVA					
PRD, mm	3.7 (1.3-9.5)	3.7 (0.3-9.3)	3.8 (0.7-12.9)	4.8* (0.8-17.1)	2.8† (1.5–6.4)
DRD, mm	3.5 (0.3-8.2)	2.3‡ (0.1-11.1)			2.0‡ (0.8-4.4)
RD, mm	3.9 (0.7-8.3)	3.1‡ (0.1-8.3)			2.4‡ (1.1–5.0)
MLD, mm	1.6 (0.2-5.6)	1.6 (0.1-6.5)			1.6 (0.2-4.6)
%DS, %	58 (16–91)	45‡ (2–95)			39‡ (1–99)
Lesion length, mm	4.6 (1.4-14.8)	12.8‡ (2.0-49.6)			12.8‡ (0.2–27.8)
Used balloon					
Size, mm	4.0 (1.5-8)	3.5‡ (1.5–8)	3.5‡ (1.25-7)	4.0 (1.5-8)	2.0† (1.5-4.5)
Inflated pressure, atm	12 (2-22)	8‡ (2-18)	10 (2-20)	12 (3-18)	10 (2-16)
Success, n (%)	248 (100)	1219 (98.7)	296§ (86.5)	351 (52.2)	28 (63.6)
Complication, n (%)	4 (1.6)	27 (2.2)	53* (15.5)	4 (6.0)	19 (43.2)
Type of complication			'		
Balloon injury, n	3	7	5	0	0
Wire injury/perforation, n	0	12	41	4	19
Dissection of vessels, n	1	8	7	0	0

Values are presented as the median and the range. DRD indicates distal reference diameter, %DS, percent diameter stenosis; MLD; minimal lumen diameter, PRD proximal reference diameter; QVA, quantitative vascular analysis; and RD, reference diameter.

^{*}P<0.05 vs ring-like stenosis, web and subtotal lesions.

[†]P<0.01 vs ring-like stenosis, web, subtotal and total occlusion lesions.

[‡]P<0.01 vs ring-like stenosis.

[§]P<0.01 vs ring-like stenosis and web lesion.

IP<0.01 vs ring-like stenosis, web and subtotal lesions.

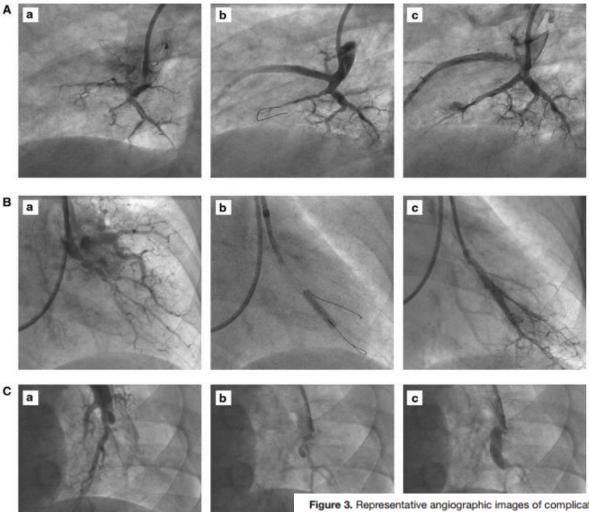
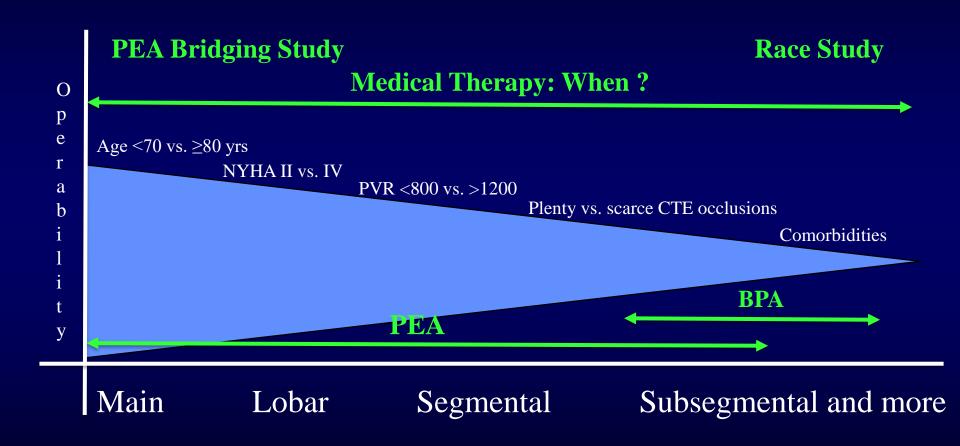


Figure 3. Representative angiographic images of complications of balloon pulmonary angioplasty (BPA). All the "a" parts show angiographic images before BPA. All the "b" parts show images during BPA when the complication occurs. All the "c" parts show images after the complication occurs. A, Wire injury and extravasation of contrast medium. At a subtotal lesion, the wire extends to the distal artery and injury occurs at the tip of the wire. B, Balloon injury. A web lesion, after inflation of the balloon, contrast medium pools, and stains. C, Dissection of vessels. At a subtotal lesion, after crossing the wire, dissection occurs, and the contrast medium stays at the site of dissection.

BPA IN THE GUIDELINES FOR PH

Table 34 Recommendations for chronic thromboembolic pulmonary hypertension

Recommendations	Classa	Levelb	Ref.c
In PE survivors with exercise dyspnoea, CTEPH should be considered	lla	С	449
Life-long anticoagulation is recommended in all patients with CTEPH	1	С	91
It is recommended that in all patients with CTEPH the assessment of operability and decisions regarding other treatment strategies should be made by a multidisciplinary team of experts	1	С	91
Surgical PEA in deep hypothermia circulatory arrest is recommended for patients with CTEPH	-	С	91
Riociguat is recommended in symptomatic patients who have been classified as having persistent/recurrent CTEPH after surgical treatment or inoperable CTEPH by a CTEPH team including at least one experienced PEA surgeon	-	В	441
Off-label use of drugs approved for PAH may be considered in symptomatic patients who have been classified as having inoperable CTEPH by a CTEPH team including at least one experienced PEA surgeon	IIb	В	437– 440


Table 34 Continued Class^a Level^b Recommendations Ref.c Interventional BPA may be considered in 57. 444patients who are technically ΠЬ non-operable or carry an unfavourable 446. 448 iskbenefit ratio for PEA Screening for CTEPH in asymptomatic survivors of PE is currently not ш 417 recommended BPA = balloon pulmonary angioplasty; CTEPH = chronic thromboembolic pulmonary hypertension; PAH = pulmonary arterial hypertension; PE = pulmonary embolism; PEA = pulmonary endarterectomy. ^aClass of recommendation. bLevel of evidence. *Reference(s) supporting recommendations.

Continued

CONCLUSION

- A single characteristic usually is not enough to identify a poor or a good candidate for PEA
- Multidisciplinary CTEPH team (at least one experienced surgeos) is the basis for the correct selection of the patients
- For "less experienced centers" or in general for all centers a second opinion, in absence of PEA score, could be the optimal solution for complex patients

CONCLUSION

