
# PRAGMATIC APPROACH TO ACUTE MYOCARDITIS

Enrico Ammirati, MD, PhD, FESC



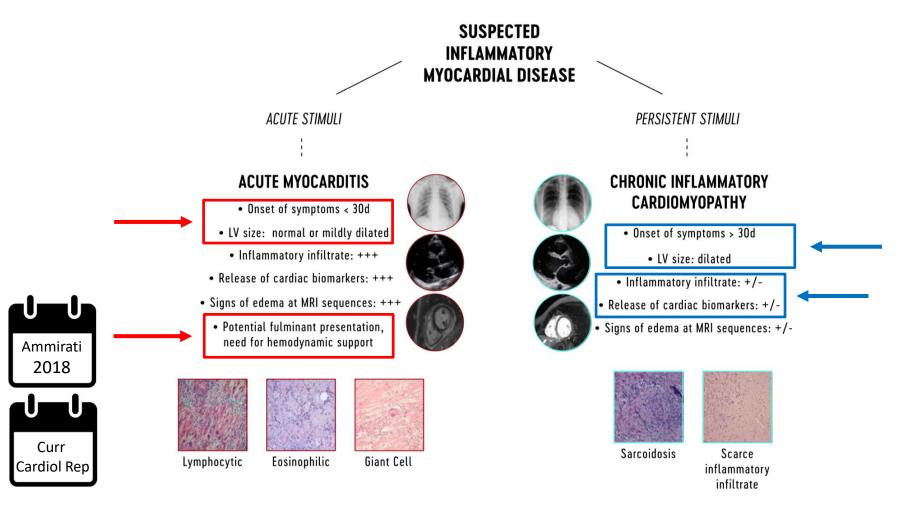




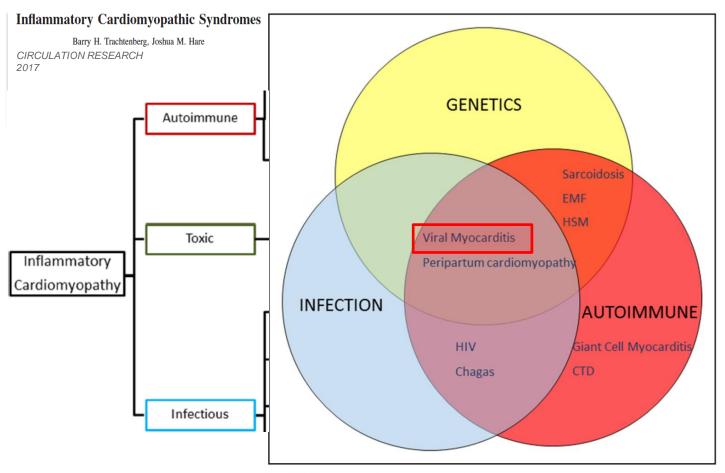









## CONTROVERSIES


- ACUTE MYOCARDITIS (AM) vs. CHRONIC INFLAMMATORY CARDIOMYOPATHY (infl-CMP) (ACUTE or CHRONIC?)
- NEW DATA FROM THE INTERNATIONAL REGISTRY ON MYOCARDITIS (FM BETTER or WORST?)
- PROPOSED MANAGEMENT/TREATMENTS OF COMPLICATED ACUTE/FM (TO EMB or NOT TO EMB?) (STEROIDS or NOT STEROIDS?)



### **ACUTE vs. CHRONIC INFLAMMATORY MYOCARDIAL DISEASE**



#### OVERLAPPING THEORIES OF COMMON CAUSES OF AM and infl-CMP



**Figure 3.** Venn diagram showing current evidence for overlapping theories of common causes of inflammatory cardiomyopathy. CTD indicates connective tissue disorders; EMF, endomyocardial fibrosis; and HSM, hypersensitivity myocarditis.

#### SPECIFIC ETIOLOGIES OF AM AND infl-CMP

## SPECIFIC INFECTIVE MYOCARDITIS

\*Lyme disease

- \*Bacterial myocarditis (Diphteric myocarditis)
- \*HIV myocarditis
- \*Associated with viral infections (i.e. **H1N1** influenza –unknown if direct damage of the virus of related to the immune response)
- \*HELMINTH PARASSITE -Toxacara canis associated EM

## **AUTOIMMUNE MYOCARDITIS:**

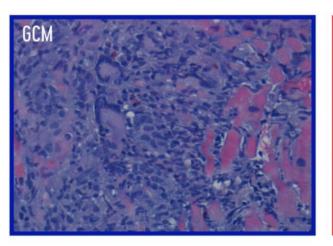
- \*Myocarditis associated with autoimmune disorders (i.e. Systemic Lupus Erythematosus; scl-70+ systemic sclerosis)
- \*Myocarditis associated with other inflammatory disorders (i.e. Inflammatory Bowel disorders)
- \*Myocarditis associated with vasculitides (i.e. GPA granulomatosis with polyangiioitis disease- Wegener, EGPA eosinophilic GPA – Churg Strauss syndrome)

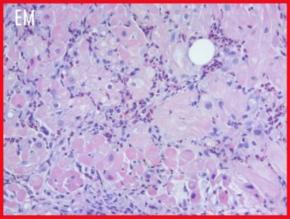
## MYOCARDITIS ASSOCIATED WITH TOXIC AGENTS:

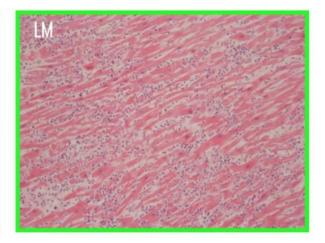
- \*IMMUNE CHECKPOINTS
  INHIBITORs (ICI i.e
  novalimub)
- \*Chemotherapy
- \*Cocaine

MYOCARDITIS ASSOCIATED
WITH
PHEOCHROMOCYTOMAC




### **HISTOLOGY IN FM**


### Histology

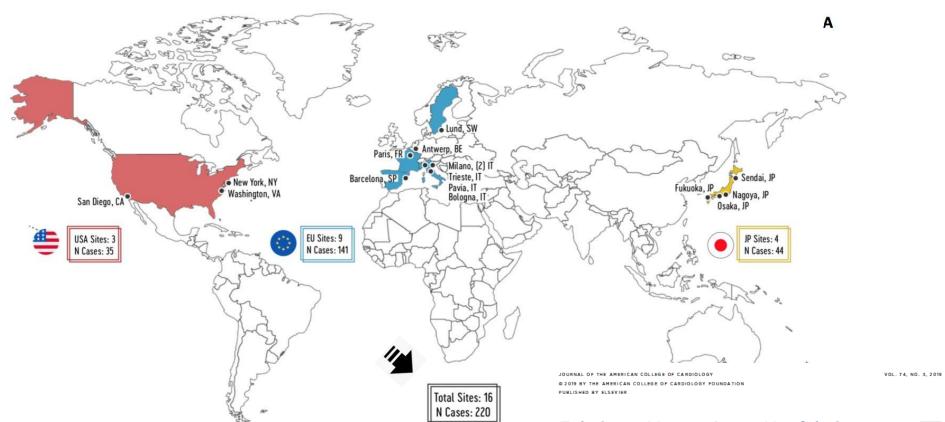

- Eosinophilic
- Giant cell
- Granulomatous (Cardiac sarcoidosis)
- Lymphocytic

All histologies can clinically present as FULMINANT MYOCARDITIS

Sagar, Cooper










## CONTROVERSIES

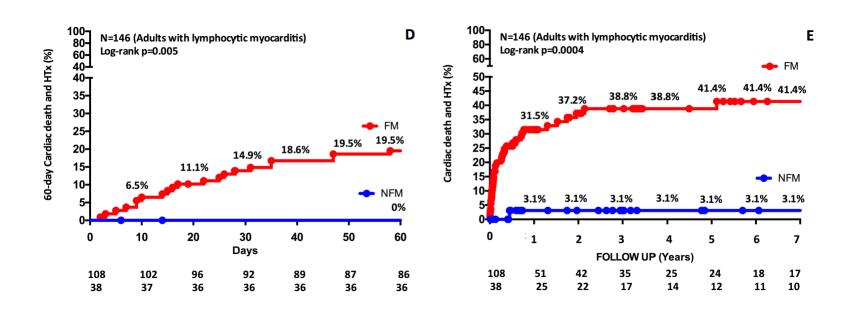
- ACUTE MYOCARDITIS (AM) vs. CHRONIC INFLAMMATORY CARDIOMYOPATHY (infl-CMP) (ACUTE or CHRONIC?)
- NEW DATA FROM THE INTERNATIONAL REGISTRY ON MYOCARDITIS (FM BETTER or WORST?)
- PROPOSED MANAGEMENT/TREATMENTS OF COMPLICATED ACUTE/FM (TO EMB or NOT TO EMB?) (STEROIDS or NOT STEROIDS?)





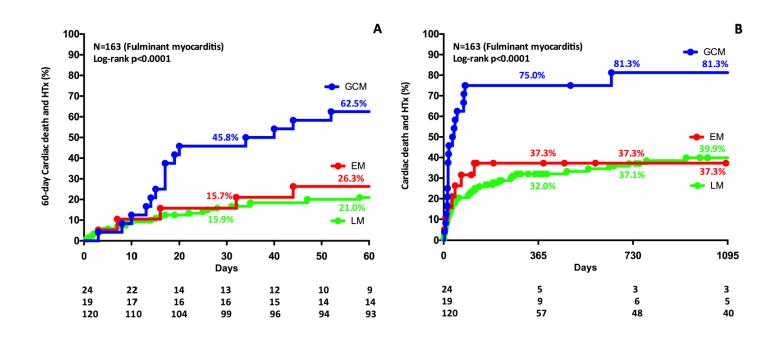
RETROSPECTIVE REGISTRY
ALL admitted to hospital
ALL HISTOLOGY PROVEN M.
ALL with LVEF<50%
SYMPTOMS' ONSET within 30
days




### Fulminant Versus Acute Nonfulminant Myocarditis in Patients With Left Ventricular Systolic Dysfunction



Enrico Ammirati, MD, PhD,<sup>a</sup> Giacomo Veronese, MD,<sup>a,b</sup> Michela Brambatti, MD, MS,<sup>c</sup> Marco Merlo, MD,<sup>d</sup> Manlio Cipriani, MD,<sup>a</sup> Luciano Potena, MD,<sup>c</sup> Paola Somani, MD,<sup>a</sup> Tatsuo Aoki, MD, PhD,<sup>f</sup> Koichiro Sugimura, MD,<sup>f</sup> Akinori Sawamura, MD, PhD,<sup>g</sup> Takahiro Okumura, MD, PhD,<sup>g</sup> Sean Pinney, MD,<sup>h</sup> Kimberly Hong, MD,<sup>c</sup> Palak Shah, MD, MS,<sup>i</sup> Öscar Braun, MD, PhD,<sup>i</sup> Caroline M. Van de Heyning, MD, PhD,<sup>k</sup> Santiago Montero, MD,<sup>hm</sup> Duccio Petrella, MD,<sup>a</sup> Florent Huang, MD,<sup>m</sup> Matthieu Schmidt, MD,<sup>m</sup> Claudia Raineri, MD,<sup>a</sup> Anuradha Lala, MD,<sup>h</sup> Marisa Varrenti, MD,<sup>a,b</sup> Alberto Foà, MD,<sup>c</sup> Omella Leone, MD,<sup>c</sup> Piero Gentile, MD,<sup>d</sup> Jessica Artico, MD,<sup>d</sup> Valentina Agostini, PhD,<sup>c</sup> Rajiv Patel, MD,<sup>i</sup> Andrea Garascia, MD,<sup>a</sup> Emeline M. Van Craenenbroeck, MD, PhD,<sup>k</sup> Kaoru Hirose, MD,<sup>c</sup> Akihiro Isotani, MD,<sup>c</sup> Tyovaki Murohara, MD, PhD,<sup>g</sup> Yoh Arita, MD, PhD,<sup>g</sup> Alessandro Sionis, MD,<sup>l</sup> Enrico Fabris, MD,<sup>d</sup> Sherin Hashem, MD, PhD,<sup>g</sup> Victor Garcia-Hernando, MD,<sup>l</sup> Fabrizio Oliva, MD,<sup>a</sup> Brary Greenberg, MD,<sup>c</sup> Hiroaki Shimokawa, MD,<sup>f</sup> Gianfranco Sinagra, MD,<sup>d</sup> Eric D. Adler, MD,<sup>c</sup> Maria Frigerio, MD,<sup>a,a</sup> Paolo G. Camici, MD<sup>c,a</sup>



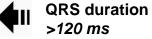

# SHORT AND LONG-TERM OUTCOME IN ADULTS with LYMPHOCYTIC MYOCARDITIS



FM have worse prognosis compared with NFM ALSO considering ONLY ADULT lymphocytic myocarditis

# SHORT AND LONG-TERM OUTCOME BASED ON HISTOLOGY IN FM




GIANT CELL MYOCARDITIS IS ASSOCIATED WITH POOR OUTCOME IN THE SHORT and LONG TERM among FM

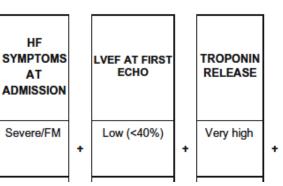
**TABLE 4** Univariate and Multivariate Analysis of Factors Associated With the Occurrence of Cardiac Death and HTx in the Overall Population

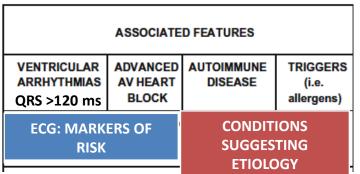
| Overall (N = 220)      | Patients With<br>Available Data | HR (95% CI) for Cardiac Mortality or HTx |                     |                     |                   |
|------------------------|---------------------------------|------------------------------------------|---------------------|---------------------|-------------------|
|                        |                                 | 60-Day Follow-Up                         |                     | Long-Term Follow-Up |                   |
|                        |                                 | Univariate                               | Multivariate        | Univariate          | Multivariate      |
| Fulminant presentation | 220                             | 17.14 (2.36-124.3)                       | 14.52 (1.67-126.2)* | 5.95 (2.40-14.77)   | 5.08 (1.65-15.68) |
| Female                 | 220                             | 0.92 (0.52-1.64)                         | _                   | 0.80 (0.51-1.26)    | _                 |
| Age                    | 220                             | 1.01 (0.99-1.03)                         | _                   | 1.01 (0.99-1.02)    | _                 |
| Histologic subtypes    | 220                             |                                          |                     |                     |                   |
| Lymphocytic            |                                 | 1 (reference)                            | 1 (reference)       | 1 (reference)       | 1 (reference)     |
| Eosinophilic           |                                 | 1.34 (0.55-3.28)                         | 1.91 (0.70-5.17)    | 1.33 (0.67-2.65)    | 1.76 (0.84-3.66)  |
| GCM                    |                                 | 4.48 (2.35-8.53)                         | 3.24 (1.41-7.44)*   | 3.75 (2.18-6.45)    | 3.48 (1.81-6.70)* |
| Sarcoidosis            |                                 | 1.07 (0.14-7.94)                         | _                   | 0.61 (0.08-4.43)    | _                 |
| Admission LVEF ≤30%    | 220                             | 1.80 (0.89-3.63)                         | _                   | 2.05 (1.17-3.62)    | 1.62 (0.87-3.04)  |
| Immunosuppression      | 216                             | 0.94 (0.52-1.74)                         | _                   | 0.78 (0.48-1.24)    | _                 |
| ECG findings           |                                 |                                          |                     |                     |                   |
| QRS interval >120 ms   | 198                             | 2.62 (1.35-5.05)                         | 2.25 (1.09-4.62)*   | 2.26 (1.37-3.72)    | 2.49 (1.44-4.28)* |
| ST-segment elevation   | 208                             | 0.79 (0.29-1.30)                         | -                   | 0.82 (0.49-1.38)    | -                 |
| Cardiac arrest†        | 213                             | 3.41 (1.86-6.24)                         | 1.13 (0.49-2.61)    | 2.68 (1.64-4.37)    | 1.32 (0.73-2.40)  |
| Advanced AV block†     | 220                             | 2.49 (1.05-5.89)                         | 1.49 (0.47-4.75)    | 1.73 (0.75-4.00)    | -                 |
| Prodromal symptoms     | 219                             | 0.90 (0.49-1.64)                         | _                   | 0.72 (0.45-1.15)    | _                 |
| Year of admission      | 220                             |                                          | -                   |                     | _                 |
| 2001-2010              | 70                              | 1 (reference)                            | _                   | 1 (reference)       | -                 |
| 2011-2018              | 150                             | 1.34 (0.69-2.59)                         | _                   | 1.40 (0.85-2.33)    | _                 |

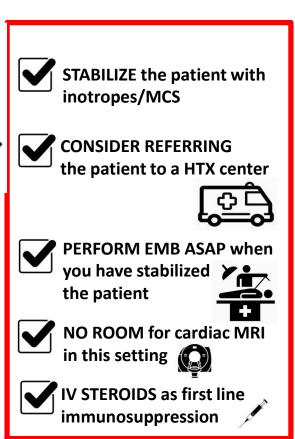










### CONTROVERSIES


- ACUTE MYOCARDITIS (AM) vs. CHRONIC INFLAMMATORY CARDIOMYOPATHY (infl-CMP) (ACUTE or CHRONIC?)
- NEW DATA FROM THE INTERNATIONAL REGISTRY ON MYOCARDITIS (FM BETTER or WORST?)
- PROPOSED MANAGEMENT/TREATMENTS OF COMPLICATED ACUTE/FM (TO EMB or NOT TO EMB?) (STEROIDS or NOT STEROIDS?)



#### PROPOSED MANAGEMENT OF ACUTE MYOCARDITIS





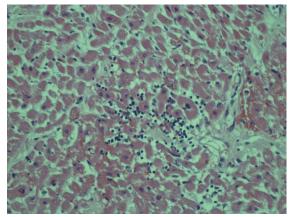


**CLINICAL PRESENTATION** 

**ASSOCIATED FEATURES** 



**TREATMENT** 








REMIND: EMB is FEASIBLE and relatively SAFE also in patients on ECMO

# HISTOLOGY HAS CLINICAL RELEVANCE IN FM



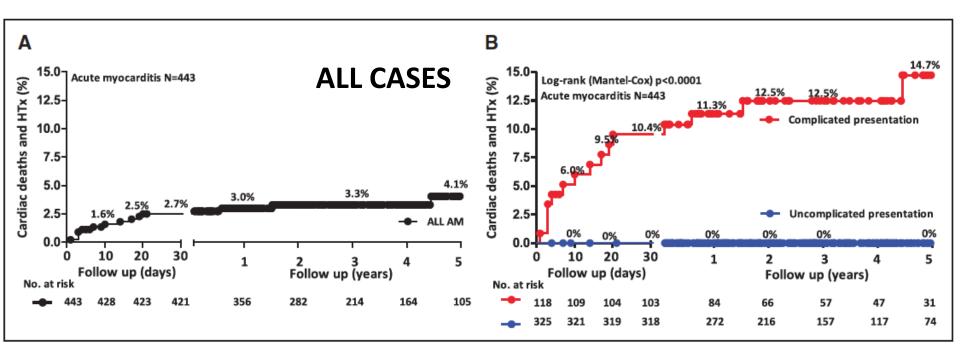
## ALGORITHM FOR THE EVALUATION OF SUSPECTED MYOCARDITIS IN THE SETTING OF UNEXPLAINED ACUTE CARDIOMYOPATHY

**AHA SCIENTIFIC STATEMENT** 

**Current Diagnostic and Treatment Strategies for Specific Dilated Cardiomyopathies** 

A Scientific Statement From the American Heart Association

Unexplained Acute Cardiomyopathy \*


Requiring inotropic or mechanical circulatory support, Mobitz type 2 second degree or higher heart block, sustained or symptomatic ventricular tachycardia or failure to respond to guideline based medical management within 1-2 weeks?

Biykem Bozkurt et al. Circulation. 2016;134:e579-e646



Yes-Endomyocardial Biopsy COR I/LOE B No- Cardiac MRI COR 2B/LOE C

# LONG-TERM OUTCOME (cardiac death+HTx) IN AM BASED ON CLINICAL PRESENTATION



### **Circulation**

#### **ORIGINAL RESEARCH ARTICLE**



**Multicenter Lombardy Registry** 

### **COMPLICATED**

- \*LVEF<50% on first ECHO
- \*Sustained Ventricular
- **Arrhythmias**
- \*Hemodynamic instability at

presentation (FM)

UNCOMPLICATED

**CASES** 

**BACKGROUND:** There is controversy about the outcome of patients with acute myocarditis (AM), and data are lacking on how patients admitted

Enrico Ammirati, MD, PhD\*

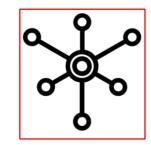
## • **CONCLUSIONS**



### TAKE HOME MESSAGE ON FM

- EARLY RECOGNITION
- 2. FROM THE SPOKE HOSPITAL TO THE **HUB**
- AGGRESSIVE SUPPORTIVE TREATMENT -> <u>MCS/INOTROPIC SUPPORT</u>
- 4. ASAP EMB in FM & COMPLICATED AM
- 5. PREVENTION OF IRREVERSIBLE MYOCARDIAL INJURY -> ACUTE PHASE IMMUNOSUPPRESANTS (? Still not fully proven the efficacy)






## FROM THE SPOKE TO THE **HUB**AGGRESSIVE **SUPPORTIVE TREATMENT**

## Day 0



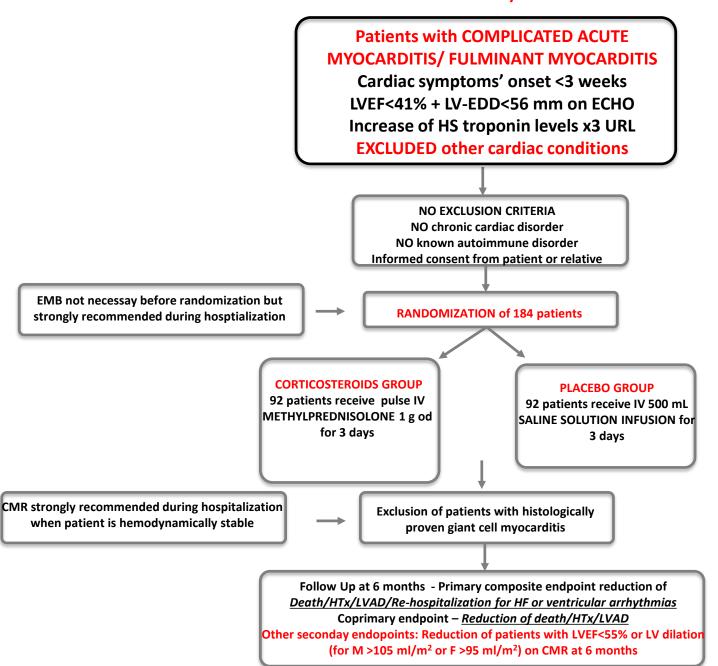








RECOVERY




**EARLY RECOGNITION!** 



**ASAP EMB** in FM & COMPLICATED AM PREVENTION OF MYOCARDIAL INJURY **ACUTE PHASE IMMUNOSUPPRESSION** (?)

## FLOW CHART OF TRIAL TO ASSESS THE EFFICACY OF IV CORTICOSTEROIDS IN COMPLICATED ACUTE MYOCARDITIS/FULMINANT MYOCARDITIS





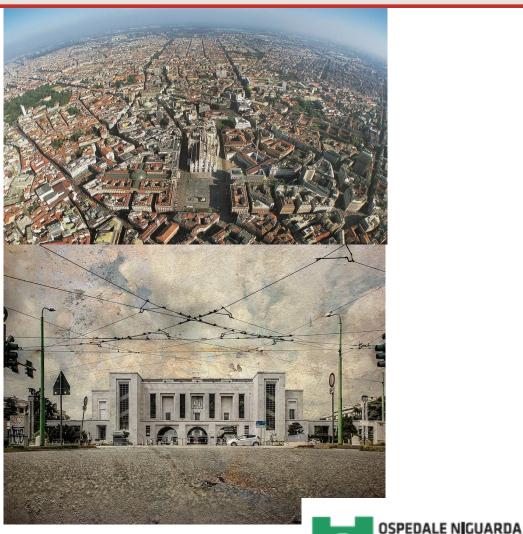
#### enrico.ammirati@ospedaleniguarda.it

SPECIAL THANKS
DE GASPERIS
CARDIO CENTER NIGUARDA

**Dr. Maria FRIGERIO** 

Dr. Manlio CIPRIANI,

Dr. Andrea GARASCIA,


**Dr. Fabrizio OLIVA** 

Dr. PIA GAGLIARDONE

Università Vita-Salute San Raffaele Prof. Paolo G. Camici

Università Milano Bicocca Dr. GIACOMO VERONESE

University of California San Diego Dr. Michela Brambatti Dr. Eric D. Adler



CA' GRANDA