PCI in 16940 patients included in the OSCAR Registry

Indications for PCI in 16940 patients included in the OSCAR Registry

Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes

Stephen D, Wrinott, M.D., Eugene Braurovald, M.U., Larolyn H. McCabe, B.S., Gilles Mantalescot, M.D., Ph.D., Wriobl Ruzylio, M.D., Shmuel Gottineb, M.O., Praz-Joseph Yaumann, M.D., Diego Ardissino, M.D., Stefano De Servi, M.D., Sabina A. Murphy, M.P.H., Jeffrey Riesmeyer, M.D., Govinda Weerakkody, Ph.D., C. Michael Gibeon, M.O., and Elliort M. Artman, M.O., for the TRITON-TIMI 31 Investigators.

Ischemic events rate according to age (median f-up:15 months) in the TRITON trial

Recurrent events in elderly vs younger patients in the TRITON trial

Recommendations for Special Populations

2007 ESC Guidelines for NSTE-ACS

 Elderly patients should be considered for routine early invasive strategy, after careful evaluation of their inherent raised risk of procedure-related complications, especially during CABG (I – B).

Invasive treatment of elderly ACS patients

• Evidence (?)

- Procedural and post-procedural risk
- Bleeding risk

Randomised trials of early invasive treatment in elderly patients with NSTEACS

Trial	Average age	% pts ≥75y	Outcome
TIMI IIIB	59	3	Benefit only >65 y
VANQWISH	61	8	No difference
FRISC II	65	Excluded	Benefit only >65 y
RITA 3	63	No age classes reported	Not reported by age
TACTICS	62	12.5	39% RR >65 56% RR >75
ICTUS	61	Not reported	Trend towards > benefit >65y

Elderly patients with NSTE-ACS: early invasive management on outcome at 6 months in the TACTICS-TIMI 18 trial

RG Bach et al Ann Intern Med 2004;141:186-195

Major events rate according to propensity score strata

De Servi S et al, Am Heart J 2004

Sensitivity and Subgroup Analyses for Adjusted In-Hospital Mortality by Utilization of an Early Invasive Management Strategy (CRUSADE)

Improvement in long-term mortality in elderly patients with MI and increased use of CV medications after discharge

"The observed improvement in long-term mortality in elderly patients with MI may be mainly due to increased use of cardiovascular medications after discharge."

Invasive treatment of elderly ACS patients

- Evidence (?)
- Procedural and post-procedural risk
- Bleeding risk

ROSAI 2 ELDERLY

Complications after PCI in ROSAI-2 registry

S.De Servi et al, AHJ 2004

PCI in the elderly : Increased Procedural Risk

- Associated morbid conditions (chronic renal failure, anemia, CHF, PVD)
- Complex anatomy (calcific tortuous lesions , diffuse and severe coronary disease ...)
- Incomplete revascularization
- Increased risk of acute and subacute stent thrombosis

Invasive treatment of elderly ACS patients

- Evidence (?)
- Procedural and post-procedural risk
- Bleeding risk

Bleeding complications associated with early invasive vs conservative strategy in TACTICS-TIMI 18

Bach RG et al, Ann Intern Med 2004;141:186

Advanced Age, Antithrombotic Strategy, and Bleeding in Non–ST-Segment Elevation Acute Coronary Syndromes

Results From the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) Trial

Renato D. Lopes, MD, PHD,* Karen P. Alexander, MD,* Steven V. Manoukian, MD,† Michel E. Bertrand, MD,‡ Frederick Feit, MD,§ Harvey D. White, MD,|| Charles V. Pollack, JR, MD, MA,¶ James Hoekstra, MD,# Bernard J. Gersh, MB, CHB, DPHIL,** Gregg W. Stone, MD,†† E. Magnus Ohman, MD*

Durbam and Winston-Salem, North Carolina; Nasbville, Tennessee; Lille, France; New York, New York; Auckland, New Zealand; Philadelphia, Pennsylvania; and Rochester, Minnesota

(J Am Coll Cardiol 2009;53:1021-30)

Advanced Age, Antithrombotic Strategy, and Bleeding in Non–ST-Segment Elevation Acute Coronary Syndromes

Results From the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) Trial

Renato D. Lopes, MD, PHD,* Karen P. Alexander, MD,* Steven V. Manoukian, MD,† Michel E. Bertrand, MD,‡ Frederick Feit, MD,§ Harvey D. White, MD,|| Charles V. Pollack, JR, MD, MA,¶ James Hoekstra, MD,# Bernard J. Gersh, MB, CHB, DPHIL,** Gregg W. Stone, MD,†† E. Magnus Ohman, MD*

Durham and Winston-Salem, North Carolina; Nasbville, Tennessee; Lille, France; New York, New York; Auckland, New Zealand; Philadelphia, Pennsylvania; and Rochester, Minnesota

(J Am Coll Cardiol 2009;53:1021-30)

Figure 2

NNT With Bivalirudin Alone Versus Heparin Plus GP IIb/IIIa Inhibitors to Avoid 1 Non-CABG Major Bleeding Event Among Patients Without Excess Dose

Advanced Age, Antithrombotic Strategy, and Bleeding in Non–ST-Segment Elevation Acute Coronary Syndromes

Results From the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) Trial

Renato D. Lopes, MD, PHD,* Karen P. Alexander, MD,* Steven V. Manoukian, MD,† Michel E. Bertrand, MD,‡ Frederick Feit, MD,§ Harvey D. White, MD,|| Charles V. Pollack, JR, MD, MA,¶ James Hoekstra, MD,# Bernard J. Gersh, MB, CHB, DPHIL,** Gregg W. Stone, MD,†† E. Magnus Ohman, MD*

Durbam and Winston-Salem, North Carolina; Nasbville, Tennessee; Lille, France; New York, New York; Auckland, New Zealand; Philadelphia, Pennsylvania; and Rochester, Minnesota

BIVALIRUDIN

UFH + GPIIbIIIa INH.

DEATH RATE IN ELDERLY PATIENTS IN THE ACUITY TRIAL

AHA Scientific Statement

Acute Coronary Care in the Elderly, Part I Non-ST-Segment-Elevation Acute Coronary Syndromes A Scientific Statement for Healthcare Professionals From the American Heart Association Council on Clinical Cardiology

In Collaboration With the Society of Geriatric Cardiology

Karen P. Alexander, MD; L. Kristin Newby, MD, MHS, FAHA;
Christopher P. Cannon, MD, FAHA; Paul W. Armstrong, MD, FAHA; W. Brian Gibler, MD;
Michael W. Rich, MD, FAHA; Frans Van de Werf, MD, PhD; Harvey D. White, MB, DSc, FAHA;
W. Douglas Weaver, MD, FAHA; Mary D. Naylor, PhD, FAHA; Joel M. Gore, MD, FAHA;
Harlan M. Krumholz, MD, FAHA; E. Magnus Ohman, MD, Chair

Clinical trial evidence is limited with regard to the efficacy and hazards of pharmacological and invasive management of NSTE ACS in the elderly.

Elderly-specific trials may be needed in certain therapeutic areas to increase certainty about treatment effects and to further our understanding of age-related variability.

Circulation. 2007;115:2549-2569.

Inclusion criteria

- Be >74 year old
- Have had symptoms suggestive of acute myocardial ischemia at rest within 48 h prior to randomization, together with
 a) ischemic ECG changes and/or
 b) elevated biochemical markers of myocardial damage.
 Provide written informed consent before randomization.

Exclusion criteria - I

- Secondary causes of myocardial ischemia
- Ongoing ischemia despite maximally titrated anti-ischemic therapy
- Ongoing signs of heart failure despite treatment
- PCI or surgery within 30 days prior to randomization

Federazione Italiana di Cardiologia Italian Federation of Cardiology

Sample size and power calculations: Amendment 1

Calculations are based on the primary-endpoint rates at 12 months in pts >75y adjusted from event rates observed in the retrospective analysis of the TACTICS-TIMI 18 trial, with a primary endpoint rate of 40% in the conservative arm. In the present study, we aim at detecting superiority of an initially invasive approach with a PE reduction to 25%.

	Two-tailed alpha	Power $1 - \beta$	N per group	N total
ICTUS, STEEPLE ISAR STUDIES	0.05	80	156	312
	0.05	85	175	350
	0.05	90	209	418

Centers without on-site cathlab operating in network with a nearby cathlab able to perform coronary angiography within 48 hours after patient enrolment, or earlier in case of emergency

Centers with on-site cathlab and a program of nonsistematic angiography in the study population

Federazione Italiana di Cardiologia Italian Federation of Cardiology

Average enrolment / center / month

Years 2008-2010

315 patients / 23 centers / 29 months

= 0.47 patients / center / month

Years 1998-2000

2220 patients / 196 centers / 24 months

= 0.54 patients / center / month

Federazione Italiana di Cardiologia Italian Federation of Cardiology

Presentations & Publication

• GISE MEETING, October 2010, GENOVA: BASELINE DATA

• ESC CONGRESS 2011: COMPLETE PRESENTATION 1-YEAR DATA

A Meta-Analysis of Individual Patient Data

Figure 6

Keith A. A. Fox, BSC, MB, CHB,* Tim C. Clayton, BSC, MSC,† Peter Damman, MD,‡ Stuart J. Pocock, BSC, MSC, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

						Add to score
Age (years)	<60	60-64	65-69	70-74	≥75	
	0	+1	+2	+3	+5	
Diabetes		No		Yes		
		0		+4		
Previous MI		No		Yes		
		0		+3		
ST-depression		No		Yes		
		0		+2		
Hypertension		No	Yes			
		0		+1		
BMI	<25	5	25-<35	2	≥35	
	+1		0		+2	
		To	tal Score			
						•
No	mogram	for Inte	ger-Base	d Risk S	Score	

for CV Death or MI at 5 Years

5-years CV death and MI in the pooled analysis of FRISC II-ICTUS-RITA 3

A Meta-Analysis of Individual Patient Data

Keith A. A. Fox, BSC, MB, CHB,* Tim C. Clayton, BSC, MSC,† Peter Damman, MD,‡ Stuart J. Pocock, BSC, MSC, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration *Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden* JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

Table 5	Treatment	Effect b	y Integer	Risk	Category	of CV	Death	or	М
---------	-----------	----------	-----------	------	----------	-------	-------	----	---

		Treatme	nt Group		
Risk Group*	Risk Score	SI	RI	HR† (95% CI)	Risk Difference* (95% CI)
1st (low)	0-4	149/1,503 (10.2%)	114/1,423 (8.2%)	0.80 (0.63 to 1.02)	-2.0% (-4.1% to 0.1%)
2nd (moderate)	5-8	186/912 (21.1%)	155/920 (17.3%)	0.81 (0.66 to 1.01)	-3.8% (-7.4% to -0.1%)
3rd (high)	≥9	140/331 (44.1%)	120/378 (33.0%)	0.68 (0.53 to 0.86)	-11.1% (-18.4% to -3.8%)
Total		475/2,746 (17.9%)	389/2,721 (14.7%)		

A Meta-Analysis of Individual Patient Data

Keith A. A. Fox, BSC, MB, CHB,* Tim C. Clayton, BSC, MSC,† Peter Damman, MD,‡ Stuart J. Pocock, BSC, MSC, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration

Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden

JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

A Meta-Analysis of Individual Patient Data

Keith A. A. Fox, BSC, MB, CHB,* Tim C. Clayton, BSC, MSC,† Peter Damman, MD,‡ Stuart J. Pocock, BSC, MSC, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

CV Death and MI – 5 years outcome

A Meta-Analysis of Individual Patient Data

Keith A. A. Fox, BSc, MB, CHB,* Tim C. Clayton, BSc, MSc,† Peter Damman, MD,‡ Stuart J. Pocock, BSc, MSc, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration.

Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden

JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

DIFFERENT APPROACH TO ELDERLY PATIENTS IN ITALIAN CATH LABS

Federazione Italiana di Cardiologia Italian Federation of Cardiology

Primary endpoint

The composite of all-cause mortality, myocardial (re)MI, disabling stroke and re-hospitalization for cardiovascular causes or severe bleeding at 12 months

Secondary endpoints

- CV mortality at 1 year
- All-cause mortality and (re)MI at 1 year
- •The composite of death, myocardial (re)MI, disabling stroke and re-hospitalization for cardiovascular causes or severe bleeding at 1 year
- Major bleeding within 12 months
- Any stroke within 12 months
- \bullet Total n° of days spent in hospital within 12 months after index admission

Results: Recruitment

- Study initiated in March 2005
 - 23 hospitals participated
 - 266 patients were recruited
- Study interrupted in December 2007 for slow recruitment

Randomised treatment strategies The Italian Elderly - ACS Study

Clinical characteristics of NSTE-ACS patients according to age

Age < 75 (n=1017) Age =>75 (n=564)

Long-Term Outcome of a Routine Versus Selective Invasive Strategy in Patients With Non–ST-Segment Elevation Acute Coronary Syndrome

A Meta-Analysis of Individual Patient Data

Keith A. A. Fox, BSC, MB, CHB,* Tim C. Clayton, BSC, MSC,† Peter Damman, MD,‡ Stuart J. Pocock, BSC, MSC, PHD,† Robbert J. de Winter, MD, PHD,‡ Jan G. P. Tijssen, PHD,‡ Bo Lagerqvist, MD, PHD,§ Lars Wallentin, MD, PHD,§ for the FIR Collaboration Edinburgh and London, United Kingdom; Amsterdam, the Netherlands; and Uppsala, Sweden JACC Vol. 55, No. 22, 2010 June 1, 2010:2435-45

CV Death – 5 years outcome

Matthias Pfisterer, MD; for the TIME Investigators*

Circulation September 7, 2004

Pfisterer et al Long-Term Outcome in Elderly CAD Patients

	INV (n=137)	MED (n=139)	Ρ	HR	Р
All death, %	21.2	22.3	0.88	0.68	0.18
Cardiac death, %	13.9	17.3	0.51	0.56	0.10
Patients with nonfatal MI, %	4.4	0.7	0.07	5.24	0.13
Patients with late PCI/CABG, %	2.9	2.9	0.98	1.41	0.67
Patients with cardiac hospitalization, %	20.4	13.0	0.11	2.37	0.01
Patients with major clinical events, %	45.3	37.4	0.22	1.43	0.08

TABLE 2. Major Events During Long-Term Follow-Up (Between Day 365 and Late Follow-Up)

HR indicates hazard ratios adjusted for sex, age, family history of coronary artery disease, peripheral vascular disease, and baseline treatment differences. All other abbreviations are as defined in text.

Primary end point according to age in the ICTUS trial.

De Winter RJ et al, N Engl J Med 2005;353:1095

Federazione Italiana di Cardiologia Italian Federation of Cardiology

Early Aggressive vs Initially Conservative Therapy in Elderly Patients with Non-ST-Elevation Acute Coronary Syndrome

The Italian elderly-ACS study A nationwide trial of the Italian Federation of Cardiology (FIC) promoted by the Italian Society of Interventional Cardiology SICI-GISE

Steering committee

Chairmen: S. Savonitto, S. De Servi

Members: A.S. Petronio, L. Bolognese, C. Greco, C. Cavallini, C. Indolfi, L. Oltrona Visconti, F Piscione Registry coordinator: G. Steffenino Event adjudication committee: G. Ambrosio, M. Galvani, A. Marzocchi, I. Santilli

> ClinicalTrials.gov ID: NCT00510185 website: http://elderly.altavianet.it

Exclusion criteria - 2

- Serum creatinine level >2.5 mg/dL
- Active internal bleeding, history of hemorrhagic diathesis or recent transfusion of RBC, whole blood or platelets
- Cerebrovascular accident within the previous month
- Known platelet count of <90,000 cells/µL
- Ongoing oral anticoagulant treatment or an INR >1.5 at the time of screening
- . Gastrointestinal or genitourinary bleeding of clinical significance within 6 weeks prior to randomization

Primary endpoint

The composite of all-cause mortality, myocardial (re)MI, disabling stroke and re-hospitalization for cardiovascular causes or severe bleeding at 6 months

Amended: At 1 year

Secondary endpoints

- CV mortality at 1 year
- All-cause mortality and (re)MI at 1 year
- •The composite of death, myocardial (re)MI, disabling stroke and re-hospitalization for cardiovascular causes or severe bleeding at 1 year
- Major bleeding within 12 months
- Any stroke within 12 months
- Total n° of days spent in hospital within 12 months after index admission

Sample size and power calculations: Amendment 1

Calculations are based on the primary-endpoint rates at 12 months in pts >75y adjusted from event rates observed in the retrospective analysis of the TACTICS-TIMI 18 trial, with a primary endpoint rate of 40% in the conservative arm. In the present study, we aim at detecting superiority of an initially invasive approach with a PE reduction to 25%.

	Two-tailed alpha	Power 1 – β	N per group	N total	N per Center (30c)
ICTUS, TACTICS ISAR STUDIES	0.05	80	156	312	10
	0.05	85	175	350	12
	0.05	90	209	418	14

• Aspirin, 325 mg p.o on admission, then 75-100 mg throughout follow-up

• Clopidogrel, 300 mg on admission, then 75 mg throughout follow-up

• GPIIb/IIIa RB: invasive arm (and conservative arm in case of angio)

- either upstream eptifibatide-tirofiban if delay to angio >4 hrs

- or post-angio abciximab, particularly if delay to angio <4hrs

• UFH: 2500 i.v. bolus, then start infusion of 7U/kg/hr nomogram-adjusted to a target aPTT of 50-70 seconds up to 30 minutes prior to angiography
• Enoxaparin: i.v. bolus of 3000 U, followed by sq administration of 75U/kg (max 6000 U) b.i.d. for 3-5 days. Latest dose ≥8 hrs prior to angio No further UFH/enoxa post-angio, except for patients laying in bed (50 U o.d.)

- Bivalirudin as anticoagulant during PCI, according to REPLACE-2 dosing:
 - i.v. bolus 0.75 mg/kg
 - 1.75 mk/kg/hour infusion during PCI

• Fondaparinux, 2.5 mg subq o.d., during the whole hospital stay, particularly in patients treated conservatively

All other medications as recommended by current practice guidelines

Countrywide distribution of the "participating" Centers

"Active Centers": September 2009

Arruolamento: (al 18.09.09)

232

http://elderly.altavianet.it/)

ARRUOLAMENTO ELDERLY in tempo reale Cumulata mensile

Elderly with NSTEMI

The ROSAI 2-Elderly Study

Conservative Strategy: OR 2,31 (1,20-4,48) events at 30 days

De Servi S, et al. Am Heart J 2004; 147: 830-836

AHA Scientific Statement

Acute Coronary Care in the Elderly, Part I Non–ST-Segment–Elevation Acute Coronary Syndromes

A Scientific Statement for Healthcare Professionals From the American Heart Association Council on Clinical Cardiology

In Collaboration With the Society of Geriatric Cardiology

Karen P. Alexander, MD; L. Kristin Newby, MD, MHS, FAHA; Christopher P. Cannon, MD, FAHA; Paul W. Armstrong, MD, FAHA; W. Brian Gibler, MD; Michael W. Rich, MD, FAHA; Frans Van de Werf, MD, PhD; Harvey D. White, MB, DSc, FAHA; W. Douglas Weaver, MD, FAHA; Mary D. Naylor, PhD, FAHA; Joel M. Gore, MD, FAHA; Harlan M. Krumholz, MD, FAHA; E. Magnus Ohman, MD, Chair

(Circulation. 2007;115:2549-2569.)

- Treatment decisions in the elderly should be tailored according to estimated life expectancy, patient wishes and co-morbidities to minimize risk and improve morbidity and mortality outcomes in this frail but highrisk population. (I – C)
- Elderly patients should be considered for routine early invasive strategy, after careful evaluation of their inherent raised risk of procedure-related complications, especially during CABG (I – B).

Recommendations for Special Populations

ESC

Patients with CKD with CrCl < 60 ml/min are at high risk of further ischaemic events and therefore should be submitted to invasive evaluation and revascularisation whenever possible (lla-B).

ACC/AHA

Chronic kidney disease carries a far worse prognosis, but unlike in several other high-risk subsets, the value of aggressive therapeutic interventions is less certain and should be further studied.

Indications for PCI in 16940 patients included in the OSCAR Registry

PCR07

OSCAR Queity

HOME

Centers without onsite cathlab operating in network with a nearby cathlab able to perform coronary angiography within 48 hours after patient enrolment, or earlier in case of emergency

Centers with onsite cathlab and a program of nonsistematic angiography in the study population

Exclusion criteria, 3

- Concomitant severe obstructive lung disease, malignancy or neurologic deficit limiting follow-up or adherence to the study protocol
- Participation in any phase of another clinical research study involving the evaluation of an investigational drug or device within 30 days prior to randomization
- Inability to give at least verbal informed consent to the study

The	Italian	Elderly	v -	ACS	Study	
	manian		/	1100	orouy	

HOME

Ospedale di Pozzuoli			
INRCA, Ancona			

HOME

Totale 29

110 165

Centers to become active
The Italian Elderly - ACS Study Sample size and power calculations

Calculations are based on the primary-endpoint rates at 6 months in pts >75y observed in the retrospective analysis of the TACTICS-TIMI 18 trial, with a primary endpoint rate of 30% at 6 months in the conservative arm. In the present Study, we aim at detecting superiority of an initially invasive approach with a PE reduction to 20%.

	Two-tailed alpha	Power 1 – β	N per group	N total	N per Center (30c)
ICTUS, STEEPLE ISAR STUDIES	0.05	80	252	504	17
	0.05	85	289	578	19
	0.05	90	338	676	23

Countrywide distribution of the "participating" Centers

The Italian Elderly - ACS Study

Research trial protocol

Early aggressive vs. initially conservative treatment in elderly patients with non-ST-elevation acute coronary syndrome: The Italian Elderly ACS study

Stefano Savonitto^a, Stefano De Servi^b, Anna Sonia Petronio^c, Leonardo Bolognese^d, Claudio Cavallini^e, Cesare Greco^f, Ciro Indolfi^g, Luigi Oltrona Visconti^h, Federico Piscioneⁱ, Giuseppe Ambrosio^I, Marcello Galvani^m, Antonio Marzocchiⁿ, Ignazio Santilli^o, Giuseppe Steffenino^p and Attilio Maseri^q

Background Elderly patients represent one-third of all admissions for non-ST-elevation acute coronary syndrome (NSTEACS) in the coronary care units. Despite their highrisk characteristics and worse outcomes, compared with younger patients, the elderly receive less aggressive treatments, also due to less clear evidence regarding the most effective treatment strategy.

Purpose The Italian Elderly ACS study includes patients older than 74 years of age with NSTEACS in a multicenter randomized clinical trial, comparing an early aggressive and an initially conservative approach. Patients not enrolled due to specific exclusion criteria or any other reason will be enrolled in a Registry.

Centers Centers with on-site interventional cathlab and centers without on-site cathlab refering patients to a cathlab within a consolidated percutaneous coronary intervention network. and ECG at 30 days, 6 months, and 1 year, post randomization.

Primary end point The composite of all-cause mortality, myocardial (re)infarction, disabling stroke, and rehospitalization for cardiovascular diseases or severe bleeding within 6 months.

Sample size Expected primary end point rates of 30% in the conservative arm vs. 20% in the invasive arm. According to these estimates, with two-tailed α of 0.05, power will be 80, 85, or 90% with 252, 289, and 338 patients per group, respectively. The goal is to enroll 700 patients from 50 centers. *J Cardiovasc Med* 9:217-226 © 2008 Italian Federation of Cardiology.

Journal of Cardiovascular Medicine 2008, 9:217-226

Keywords: acute coronary syndrome, elderly, randomized clinical trial, registry

Elderly with NSTE-ACS The ROSAI 2-Elderly Study

De Servi S, et al. Am Heart J 2004; 147: 830-836