$\mathrm{Cl}{ }^{2} \mathrm{~T}$

RES ${ }^{\text {TM }}$ Technology

Victor Legrand
CHU de Liège (Belgium)

Surface-Coated Polymers on DES:

Surface-coated polymers enables:

- Modulation of drug release, prevention of boost release
- Surface protection to minimize delivery-associated drug release
- Minimization of cytotoxicity of drugs with small therapeutic window

Issues with surface-coated polymers:

- Polymer webbing, chipping
- Limited mechanical strength
- Pro-inflammatory, associated with delayed healing and increased neointima formation
- Thrombogenic, associated with endothelial dysfunction

Biodegradable polymers: The next step

Biostable polymers

- pB-methylacrylate vinyl acetate (Cypher ${ }^{\circ}$)
- Triblock styrene (Taxusº)
- Fluoropolymer (Xience ${ }^{\circ}$)
- p-vinylpyrrolidone
(Biolynx ${ }^{\circ}$)
Biostable monomers
can be harmful!

Biodegradable polymers

- Poly(lactic acid)s and copolymers >>>lactic acid and glycolic acid
- Poly(tyrosine carbonate)s >>>chemicals, metabolites and oligomers
- Polyanhydrides >>> chemicals
- Poly(orthoesters) >>> chemicals

$$
P=0.71^{*} \quad P=0.42^{*} \quad P=0.57^{*} \quad P=0.35^{*} \quad P=0.24^{*} \quad P=0.59^{*}
$$

- BES $(N=857) \quad \operatorname{SES}(N=850)$

1. Drug « coated » stent (polymer free stent):

- Clinical results with paclitaxel (Deliver, Elutes, Aspect trials) similar to BMS
- Microporous surface: Yukon DES, Translumina:
> PF* SES non inferior to Taxus (ISAR-TEST), but late catch-up (Ruef et al.)
> Dual-DES non inferior to Cypher or Xience (ISAR-TEST-2), BP ${ }^{\circ}$ non inferior to Cypher (ISAR-TEST-3 \& ISAR-TEST-4)

2. Non surface coated stent:
[^0]
Polymer free stents: the storybook

1. DELIVER trial: PTX polymer free coated stent vs BMS

TABLE 3. Acute Gain, Late Loss, and Binary Restenosis in the Angiographic Substudy

	ACHIEVE $(\mathrm{n}=228)$	ML PENTA $(\mathrm{n}=214)$	P
Acute gain, mm			
In-stent	1.91 ± 0.51	1.91 ± 0.41	1.0
Segment	1.41 ± 0.54	1.42 ± 0.48	0.8
Late loss, mm			
In-stent	0.81 ± 0.60	0.98 ± 0.57	0.0025
Segment	0.43 ± 0.57	0.56 ± 0.59	0.01
Proximal margin	0.28 ± 0.57	0.31 ± 0.57	0.6
Distal margin	0.11 ± 0.49	0.18 ± 0.54	0.15
Binary restenosis, \%			
In-stent	14.9	20.6	0.076
Segment	16.7	22.4	0.08
Proximal margin	4.4	5.6	0.7
Distal margin	2.2	4.2	0.3

Lansky A et al Circulation.2004;109:1948-54

Polymer free stents: the storybook

2. ELUTES trial: PTX polymer free coated stent dose evaluation study

TABLE 3. Cumulative MACE at 12 Months

	Pacilaxel Dose Density, $\mu \mathrm{g} / \mathrm{mm}^{2}$					
	0 (Control: $\mathrm{n}=38 \text {) }$	$\begin{gathered} 0.2 \\ (\mathrm{n}=37) \end{gathered}$	$\begin{gathered} 0.7 \\ (\mathrm{n}=39) \end{gathered}$	$\begin{gathered} 1.4 \\ (\mathrm{n}=39) \end{gathered}$	$\begin{gathered} 2.7 \\ (\mathrm{n}=37) \end{gathered}$	P^{*}
Death	0	0	0	0	1	NS
Q-wave MI	0	0	0	0	0	NS
SAT	1	0	0	0	1	NS
Non-Q-wave MI	0	0	1	0	1	NS
Total TLR	6	2	2	4	2	NS
CABG	1	0	1	0	0	
PCl	5	2	1	4	2	
Event-free, \%	82	95	92	90	86	

SAT indicates subacute thrombosis.

Combined results for\%DS from ELUTES and ASPECT as a function of dose density

Gershlick A et al Circulation.2004;109: 487-493

Polymer free stents: the storybook

3. ASPECT trial: PTX polymer free coated stent vs BMS

Post PCI

@ 6 months
@ 24 months

Park DW et al JACC.2006: 48; 2432-9.

Non surface coated stent:

The solution?

1. Drug « coated» stent (polymer free stent):

- Clinical results with paclitaxel (Deliver, Elutes, Aspect trials) similar to BMS
- Microporous surface: Yukon DES, Translumina:
> PF* SES non inferior to Taxus (ISAR-TEST), but late catch-up (Ruef et al.)
> Dual-DES non inferior to Cypher or Xience (ISAR-TEST-2), BP° non inferior to Cypher (ISAR-TEST-3 \& ISAR-TEST-4)

2. Non surface coated stent:

- Reservoir Technology: NEVO ${ }^{\text {TM }}$ (Cordis J\&J)
- Tubular struts with microholes (Medtronic)
* Polymer Free, ${ }^{\circ}$ Biodegradable Polymer

What Is Reservoir Technology?

Surface-Coated Stents

Polymer coating can crack or peel during stent delivery

Struts completely covered with polymer \rightarrow Potential toxicity

Permanent polymer exposure
\rightarrow potential contributor to VLST¹

Drug is eluted from both vessel-wall and lumenfacing sides of stent.

NEVO $^{\text {TM }}$

Polymer is protected within the reservoirs

No polymer on the surface

Polymer is bioabsorbed in as little as 90 days

Controlled drug delivery preferentially to the vessel wall

NEVO will utilize RES technology to deliver sirolimus, the most proven drug

NEVO $^{\text {T }: ~ A n ~ I n n o v a t i v e ~ S t e n t ~ C o n c e p t ~}$

 Beyond Surface-Coated Stents
During

 ImplantationDesigned to deliver as a BMS

Day 1

The NEVO ${ }^{\text {TM }}$ Platform: Fluoroscopic Radiopacity and Strut Thickness

Balanced Performance Features

- Improved radiopacity
- Better radial strength
- Low recoil

COMPARISON OF RADIOPACITY

COMPARISON OF STRUT THICKNESS

NEVO $^{\text {TM }}$ is Designed to be Highly Fracture Resistant

NEVO $^{\text {TM }}$ incorporates ductile hinges to:

- Absorb expansion forces and pulsatile energy
- Maintain reservoir integrity
- Retain proper orientation of stent against artery wall ${ }^{1}$
- Resist fractures²

1. Overlapping stents implanted in porcine coronary arteries. Data on file, Cordis Corp.

NEVO ${ }^{\text {TM }}$ Technology Flexibility \& Conformability

A tighter repeating pattern \& open architecture are key design parameters behind NEVO's optimized flexibility \& conformability.

Day 1

Day 30

Day 60

Day 90

DES
BMS
Data taken with NEVO $^{\text {TM }}$ stent utilizing RES TECHNOLOGY™
Fully bioabsorbable PLGA polymer

- Used in a variety of medical applications such as VICRYL ${ }^{\text {T }}$ sutures ${ }^{1}$

- Highly biocompatible
- Fully metabolized bioproducts $\left(\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$
- Designed for complete bioabsorption so that RES TECHNOLOGY™ stents transform into BMS

CHU NEVO™ Reservoirs are Designed for
 de Liège
 Directional Sirolimus Release to the Artery Wall

Bollygneemcerncrextitoation

\square

NEVO $^{\text {M }}$ Yields Controlled and Sustained Arterial Sirolimus Levels

NEVO ELUTION PROFILE ENSURES OPTIMAL SUPPRESSION OF INFLAMMATION AND NEOINTIMAL TISSUE FORMATION

CoCr stent platform

Flexible, conformable, thin struts, maximized vessel coverage, open cell design

Reservoir technology

Drug and polymer recessed within reservoirs
in the stent strut - no surface-coating. Reduced vessel wall - polymer contact

Bioabsorbable polymer
Designed for complete bioabsorption in as little as 90 days

Proven Sirolimus Evidence

CYPHER®-like tissue content
Largest body of evidence with safety data out to 10 years

$\underset{\text { de Liege }}{\mathrm{H}}$
 NEVO RES-I Study Overview

Single De Novo Native Coronary Artery Lesions
Reference vessel diameter: $2.5-3.5 \mathrm{~mm}$
Lesion length: $\leq 28 \mathrm{~mm}$

40 Sites Worldwide
394 subjects, stratified by diabetic status

Principal Investigators

John Ormiston
Alexandre Abizaid Christian Spaulding

Primary Endpoint 6-Month In-Stent Late Loss
IVUS Substudy: 50 patients per arm
Dual antiplatelet therapy for ≥ 6 months

89.3\% Angiographic follow-up; 94.7\% 360-day clinical follow-up

NEVO RES-I: Primary Endpoint Late Lumen Loss at 6 Months

PRIMARY ENDPOINT: LATE LUMEN LOSS AT 6 MONTHS

NEVO RES-I: Distribution of In-Stent Late Loss

DISTRIBUTION OF IN-STENT LATE LOSS

NEVO RES-I:

In-Stent Restenosis Pattern at 6 Months

Abizaid A., et al., EuroPCR 2010; Oral Presentation.

NEVO RES-I: 12-month MACE and Components

12-MONTH MACE AND COMPONENTS

No reports of death or MI between 6 and 12 months in NEVO arm

NEVO RES-I was not powered for clinical endpoints
MACE=Major adverse cardiac events.
Abizaid A., et al., EuroPCR 2010; Oral Presentation.

NEVO RES-I:
 Diabetic Subgroup - 12-Mth MACE

NEVO ${ }^{\text {тм }} \quad$ Taxus® ${ }^{\circledR}$ Liberté $^{\text {TM }}$

Abizaid A., et al., EuroPCR 2010; Oral Presentation.

NEVO RES-I: ARC Stent Thrombosis Through 12 Months

	$\begin{aligned} & \text { NEVO }^{\text {TM }} \\ & (\mathrm{n}=202) \end{aligned}$	$\begin{gathered} \text { TAXUS }{ }^{\circledR} \text { Liberté }{ }^{\circledR} \\ (\mathrm{n}=192) \end{gathered}$	P Value
Definite	0	0	--
Probable	0	1 (0.5\%)	0.49
Possible	0	1 (0.5\%)	0.49
Any ARC	0	2 (1.1\%)	0.24

- No reports of early (first 30 days) stent thrombosis in either arm
- 2 reports of late stent thrombosis in TAXUS ${ }^{\circledR}$ Liberté ${ }^{\circledR}$-treated patients
- ARC probable stent thrombosis on Day 180
- ARC possible stent thrombosis on Day 101

Through 12 months, no cases of stent thrombosis, regardless of definition, were reported in NEVO ${ }^{\text {TM }}$-treated patients.

At Day 410, a TAXUS ${ }^{\circledR}$ Liberté ${ }^{\circledR}$ patient had a definite ST 25 days after DAPT was discontinued for elective surgery'

CHU 9 mths invasive FU: IVUS, and OCT
 de Liège

Reservoir

Abizaid A et al. Catheterization and Cardiovascular Interventions,

Conclusions

- NEVO™ incorporates novel features: RES TECHNOLOGY ${ }^{\text {TM }}$ with sirolimus and a bioabsorbable polymer (absorbtion in ~ 90 days) on an open cell, flexible cobalt chromium platform
- The NEVO-RES I trial demonstrated the superiority of NEVO™ over Taxus® Liberté ${ }^{\text {TM }}$ with a highly significant and clinically meaningful difference in the primary endpoint of in-stent late loss at 6 months.
- While not powered for clinical endpoints, the 12-month rates of death, MI, and revascularization as well as the composite endpoints of TLF, TVF, and MACE numerically favored $\mathrm{NEVO}^{\text {TM }}$ over Taxus® Liberté ${ }^{\text {TM }}$
- The same magnitude of benefit of the $\mathrm{NEVO}^{\text {™ }}$ stent over the Taxus ${ }^{\circledR}$ Liberté ${ }^{\text {TM }}$ stent was seen in the pre-defined subgroups of diabetes and long lesions.
- No stent thromboses were observed in the NEVO ${ }^{\text {TM }}$ group while 2 late thromboses during dual APT therapy occurred in the Taxus® Liberté ${ }^{T M}$ group through 12 months, and a third occurred after 13 months

NEVO will be compared against all leading surface-coated DES across a broad spectrum of patients

NEVO RES-I

- 394 patients
- Europe, NZ, SA, Australia
- Randomized
- Angiographic study vs TAXUS ${ }^{\circledR}$ Liberte ${ }^{\circledR}$
- 1^{0} Endpoint: 6-mo instent late loss
- "On-label"

NEVO II

- 2500 patients
- Europe, Israel
- Randomized
- Clinical outcomes vs Xience V®/Prime
- 1^{0} Endpoint: 12-mo TLF
- All-comers

NEVO III

- 1600 patients
- US
- Nonrandomized
- Clinical outcomes vs CYPHER ${ }^{\circledR}$
(CYPRESS study)
- 1^{0} Endpoint: 12-mo TLF
- "Near on-label"

CYNERGY

- 14,000 patients
- EMEA, LATAM, APAC, CAN
- Sequential enrollment of CYPHER ${ }^{\circledR}$ and then NEVO ${ }^{\text {TM }}$
- Clinical outcomes vs CYPHER ${ }^{\circledR}$
- 1^{0} Endpoint: $12-m o$ TLF
- Patients with STEMI, DM, MVD
de Liège

All-Comers
 ~2500 patients @ 32 sites

Primary Endpoint: 12M Composite Clinical Endpoint of Cardiac Death, TV-related MI, and Clinically Driven TLR

Angiographic and IVUS Substudies

What will be the next frontier?

${ }^{6}$ T have

RES Technology Provides a Wide Range of Controlled Drug Delivery Options

Controlled release kinetics

Rapid (days) or prolonged (months) drugelution profiles can be achieved by modifying the reservoir inlay composition ${ }^{1}$

Directional drug release

- Towards the lumen or vessel wall ${ }^{2}$

Multiple drug delivery

- With independent release kinetics and direction ${ }^{3}$

1. Edelman E et al. Cardiac \& Vascular Update, 2009;2:7-9.
2. Parker T et al. Release kinetics for a cilostazol eluting stent using RES TECHNOLOGYTM. BioInterface 2009 Conference; October 26-28, 2009; San Mateo, CA.
3. LiC et al. Cilostazol and sirolimus dual drug eluting stent based on RES TECHNOLOGY ${ }^{m}$. Transcatheter Cardiovascular Therapeutics Conference (TCT 2009); September 21-25, 2009; San Francisco, CA.

The reservoirs allow for different drug release combinations

Preferential
directional release
($\mathrm{NEVO}^{\text {m }}$)

Dual drug in single reservoir bi-directional release (Future)

Dual drug in alternate reservoirs bi-directional release (Future)

Therapeutics Programs Utilizing RES TECHNOLOGY™

Thrombosis Reduce stent thrombosis and DAPT dependence

Acute MI
Prevent "no-reflow" and reduce infarct size

Diabetes
Further reduce restenosis and improve clinical outcomes

Antithrombotic Stent Strategies

Sirolimus (abluminal)

Surface-modification

- Low MW heparin
- Nitric oxide
- Endothelial cell promoter

Antithrombotic (luminal)

- Factor Xa - thrombin inhibitor
- GP2b/3a inhibitor (tirofiban)
- Direct platelet inhibitor (cilostazol)

Sirolimus-eluting Stent with Antithrombotic Surface Modification

Design Features:

- Nanolayer of low molecular weight heparin covalently bound to bare metal surface
- Reservoirs loaded with sirolimus
- Same dose and release kinetics as NEVO ${ }^{\text {TM }}$

- Potential to inhibit both early and late stent thrombosis

RES Technology for Acute Myocardial Infarction

Objectives:

- Early reperfusion with a stent
- Elution of a therapeutic agent
-Reduce stent thrombosis
-Prevent no-reflow
-Reduce infarct size
- Reduce clinical events
-Mortality
-LV dysfunction
-CHF

« No Reflow » Following Coronary Reperfusion

Significance:

- Impairs myocardial perfusion (TIMI III flow)
- Direct association with increased mortality

Causes:

- Distal embolization of thrombus
- Interstitial edema \& swelling
- Endothelial damage
- Leukocyte plugging
- Vasospasm and constriction

Treatment strategies:

- Thrombus aspiration/extraction
- Pharmacologic agents
- Adenosine
- Nitric oxide
- Calcium channel blockers
- GP2b/3a inhibitors

Next-Generation Stent for Diabetics

Objective:

Address unmet needs of the diabetic patient

- Further reduce neointimal proliferation, TLR, stent thrombosis Sirolimus (abluminal)

Complementary therapeutic (luminal or abluminal)
Antithrombotic
Antiinflammatory
Antiproliferative that synergizes with sirolimus

Summary

- RES TECHNOLOGY ${ }^{\text {™ }}$ provides a unique platform for intravascular drug delivery.
- Therapeutic programs in thrombosis, acute MI and diabetes are in progress.
- Promising candidates have been developed that are active in preclinical models.
- These devices have the potential to provide significant clinical benefit over current therapies.
- RES TECHNOLOGY ${ }^{\text {TM }}$, beginning with NEVO $^{\text {TM }}$, will lead the next revolution in interventional cardiology and transform the treatment of vascular disease.

[^0]: * Polymer Free, ${ }^{\circ}$ Biodegradable Polymer

