

RES[™] Technology

Victor Legrand CHU de Liège (Belgium)

Surface-Coated Polymers on DES: A Necessary Evil?

Surface-coated polymers enables:

- Modulation of drug release, prevention of boost release
- Surface protection to minimize delivery-associated drug release
- Minimization of cytotoxicity of drugs with small therapeutic window

Issues with surface-coated polymers:

- Polymer webbing, chipping
- Limited mechanical strength
- Pro-inflammatory, associated with delayed healing and increased neointima formation
- Thrombogenic, associated with endothelial dysfunction

Biodegradable polymers: The next step

Biostable polymers

- pB-methylacrylate vinyl acetate (Cypher[°])
- Triblock styrene (Taxus°)
- Fluoropolymer (Xience°)
- p-vinylpyrrolidone (Biolynx°)

Biostable monomers can be harmful!

Biodegradable polymers

- Poly(lactic acid)s and copolymers >>>lactic acid and glycolic acid
- Poly(tyrosine carbonate)s
 >>chemicals, metabolites and oligomers
- Polyanhydrides >>> chemicals
- Poly(orthoesters) >>> chemicals

Are biodegradable polymers as effective and/or safe?

/ Drug coated stent without polymer: Not efficacious?

1. Drug « coated » stent (polymer free stent):

- Clinical results with paclitaxel (Deliver, Elutes, Aspect trials) similar to BMS
- Microporous surface: Yukon DES, Translumina:
- PF* SES non inferior to Taxus (ISAR-TEST), but late catch-up (Ruef et al.)
- Dual-DES non inferior to Cypher or Xience (ISAR-TEST-2), BP° non inferior to Cypher (ISAR-TEST-3 & ISAR-TEST-4)

2. Non surface coated stent:

- Reservoir Technology: NEVO[™] (Cordis J&J)
- Tubular struts with microholes (Medtronic)
 - * Polymer Free, ° Biodegradable Polymer

Polymer free stents: the storybook 1. DELIVER trial: PTX polymer free coated stent vs BMS

Figure 2. In-stent cumulative distribution curve for minimum lumen diameter (MLD). TABLE 3. Acute Gain, Late Loss, and Binary Restenosis in the Angiographic Substudy

	ACHIEVE (n=228)	ML PENTA (n=214)	P
Acute gain, mm			
In-stent	1.91±0.51	1.91±0.41	1.0
Segment	1.41 ± 0.54	1.42±0.48	0.8
Late loss, mm			
In-stent	0.81±0.60	0.98±0.57	0.0025
Segment	0.43±0.57	0.56±0.59	0.01
Proximal margin	0.28 ± 0.57	0.31±0.57	0.6
Distal margin	0.11±0.49	0.18±0.54	0.15
Binary restenosis, %			
In-stent	14.9	20.6	0.076
Segment	16.7	22.4	0.08
Proximal margin	4.4	5.6	0.7
Distal margin	2.2	4.2	0.3

Lansky A et al Circulation.2004;109:1948-54

Polymer free stents: the storybook 2. ELUTES trial: PTX polymer free coated stent dose evaluation study

TABLE 3. Cumulative MACE at 12 Months

	Paclitaxel Dose Density, μ g/mm ²					
	0 (Control; n=38)	0.2 (n=37)	0.7 (n=39)	1.4 (n=39)	2.7 (n=37)	P*
Death	0	0	0	0	1	NS
Q-wave MI	0	0	0	0	0	NS
SAT	1	0	0	0	1	NS
Non-Q-wave MI	0	0	1	0	1	NS
Total TLR	6	2	2	4	2	NS
CABG	1	0	1	0	0	
PCI	5	2	1	4	2	\frown
Event-free, %	82	95	92	90	86	0.754

SAT indicates subacute thrombosis.

Combined results for%DS from ELUTES and ASPECT as a function of dose density

Gershlick A et al Circulation.2004;109: 487-493

Polymer free stents: the storybook 3. ASPECT trial: PTX polymer free coated stent vs BMS

Park DW et al JACC.2006: 48; 2432-9.

Non surface coated stent: The solution?

- 1. Drug « coated » stent (polymer free stent):
- Clinical results with paclitaxel (Deliver, Elutes, Aspect trials) similar to BMS
- Microporous surface: Yukon DES, Translumina:
- PF* SES non inferior to Taxus (ISAR-TEST), but late catch-up (Ruef et al.)
- Dual-DES non inferior to Cypher or Xience (ISAR-TEST-2), BP° non inferior to Cypher (ISAR-TEST-3 & ISAR-TEST-4)
- 2. Non surface coated stent:
- Reservoir Technology: NEVO[™] (Cordis J&J)
- Tubular struts with microholes (Medtronic)
 - * Polymer Free, ° Biodegradable Polymer

What Is Reservoir Technology?

Surface-Coated Stents

Polymer coating can crack or peel during stent delivery

Struts completely covered with polymer → *Potential toxicity*

Permanent polymer exposure → potential contributor to VLST¹

Drug is eluted from both vessel-wall and lumenfacing sides of stent.

NEVO[™]

Polymer is protected within the reservoirs

No polymer on the surface

Polymer is bioabsorbed in as little as 90 days

Controlled drug delivery preferentially to the vessel wall

NEVO will utilize RES technology to deliver sirolimus, the most proven drug

Wessely R. The relationship between stent components and safety: from intervention to long-term prognosis. Cardiac & Vascular Update 2010;2:4-9

The NEVO[™] Platform: Fluoroscopic Radiopacity and Strut Thickness

180 Surface Polymer **Balanced Performance Features** Coating 160 Improved radiopacity Stent Thickness 140 (color) Better radial strength Strut Thickness (µm) 120 Low recoil 100 80 NEVO 60 40 20 XIENCE VTM TAXUS[®] CYPHER[®] Endeavor[®] XIENCE V[™] NEVO[™]

COMPARISON OF RADIOPACITY

COMPARISON OF STRUT THICKNESS

NEVO[™] is Designed to be Highly Fracture Resistant

NEVO™ incorporates ductile hinges to:

- Absorb expansion forces and pulsatile energy
- Maintain reservoir integrity
- Retain proper orientation of stent against artery wall¹
- Resist fractures²

1. Overlapping stents implanted in porcine coronary arteries. Data on file, Cordis Corp.

NEVOTM Technology Flexibility & Conformability

A tighter repeating pattern & open architecture are key design parameters behind NEVO's optimized flexibility & conformability.

Fully bioabsorbable PLGA polymer

- Used in a variety of medical applications such as VICRYL[™] sutures¹
- Highly biocompatible
- Fully metabolized bioproducts (CO₂ + H₂O)
- Designed for complete bioabsorption so that RES TECHNOLOGY™ stents transform into BMS

(-CH-C-0), (CH2-C-0-)

NEVO[™] Reservoirs are Designed for Directional Sirolimus Release to the Artery Wall

Balss, Chisholm, Maryanoff. Internal data on file. Cordis Corp.

NEVO[™] Yields Controlled and Sustained Arterial Sirolimus Levels

CHU de Liège

NEVO[™] Sirolimus-Eluting Stent

CoCr stent platform

Flexible, conformable, thin struts, maximized vessel coverage, open cell design

Reservoir technology

- Drug and polymer recessed within reservoirs in the stent strut - no surface-coating.
 - Reduced vessel wall polymer contact

Bioabsorbable polymer

Designed for complete bioabsorption in as little as 90 days

Proven Sirolimus Evidence

- CYPHER®-like tissue content
- Largest body of evidence with safety data out to 10 years

NEVO RES-I Study Overview

*TLF = Target Lesion Failure **IVUS=intravascular ultrasound

EuroPCR 2009, oral presentation, Chr. Spaulding

NEVO RES-I: Primary Endpoint – Late Lumen Loss at 6 Months

PRIMARY ENDPOINT: LATE LUMEN LOSS AT 6 MONTHS

NEVO RES-I: Distribution of In-Stent Late Loss

DISTRIBUTION OF IN-STENT LATE LOSS

Data reflect completed 6 months follow-up, core lab, and CEC adjudication. TCT 09, Oral presentation, J. Ormiston

Abizaid A., et al., EuroPCR 2010; Oral Presentation.

NEVO RES-I: 12-month MACE and Components

12-MONTH MACE AND COMPONENTS

No reports of death or MI between 6 and 12 months in NEVO arm

NEVO RES-I was not powered for clinical endpoints MACE=Major adverse cardiac events.

Abizaid A., et al., EuroPCR 2010; Oral Presentation.

CHOP NEVO RES-I: Diabetic Subgroup – 12-Mth MACE

Abizaid A., et al., EuroPCR 2010; Oral Presentation.

NEVO RES-I: ARC Stent Thrombosis Through 12 Months

	NEVO™ (n=202)	TAXUS [®] Liberté [®] (n=192)	P Value
Definite	0	0	
Probable	0	1 (0.5%)	0.49
Possible	0	1 (0.5%)	0.49
Any ARC	0	2 (1.1%)	0.24

- No reports of early (first 30 days) stent thrombosis in either arm
- 2 reports of late stent thrombosis in TAXUS[®] Liberté[®]-treated patients
 - ARC probable stent thrombosis on Day 180
 - ARC possible stent thrombosis on Day 101

Through 12 months, **no cases of stent thrombosis**, regardless of definition, were reported in **NEVO™-treated patients**.

At Day 410, a TAXUS[®] Liberté[®] patient had a definite ST 25 days after DAPT was discontinued for elective surgery'

NEVO RES-I was not powered for clinical endpoints. Abizaid A et al. EuroPCR 2010, oral presentation.

angiography showing the six-month result preserved, with no sign of catch-up; IVUS examination at 9 months confirming the excellent angiographic result

OCT image at 9 months showing complete strut coverage with "normallooking" tissue and no occurrence of incomplete strut apposition.

NEVO™ OCT image - 9 months

Abizaid A et al. Catheterization and Cardiovascular Interventions, June 2010

Conclusions

- NEVO[™] incorporates novel features: RES TECHNOLOGY[™] with sirolimus and a bioabsorbable polymer (absorbtion in ~ 90 days) on an open cell, flexible cobalt chromium platform
- The NEVO-RES I trial demonstrated the superiority of NEVO[™] over Taxus[®] Liberté[™] with a highly significant and clinically meaningful difference in the primary endpoint of in-stent late loss at 6 months.
- While not powered for clinical endpoints, the 12-month rates of death, MI, and revascularization as well as the composite endpoints of TLF, TVF, and MACE numerically favored NEVO[™] over Taxus® Liberté[™]
 - The same magnitude of benefit of the NEVO[™] stent over the Taxus[®] Liberté[™] stent was seen in the pre-defined subgroups of diabetes and long lesions.
- No stent thromboses were observed in the NEVO[™] group while 2 late thromboses during dual APT therapy occurred in the Taxus® Liberté[™] group through 12 months, and a third occurred after 13 months

NEVO™ Clinical Trial Program

NEVO will be compared against all leading surface-coated DES across a broad spectrum of patients

NEVO RES-I	NEVO II	NEVO III	CYNERGY
 394 patients Europe, NZ, SA, Australia Randomized Angiographic study vs TAXUS[®] Liberte[®] 1° Endpoint: 6-mo in- stent late loss "On-label" 	 2500 patients Europe, Israel Randomized Clinical outcomes vs Xience V[®]/Prime 1° Endpoint: 12-mo TLF All-comers 	 1600 patients US Nonrandomized Clinical outcomes vs CYPHER[®] (CYPRESS study) 1° Endpoint: 12-mo TLF "Near on-label" 	 14,000 patients EMEA, LATAM, APAC, CAN Sequential enrollment of CYPHER[®] and then NEVO[™] Clinical outcomes vs CYPHER[®] 1° Endpoint: 12-mo TLF Patients with STEMI, DM, MVD

CHU de Liège

NEVO-II Study Overview

Principal Investigators Patrick Serruys Stefan Windecker Manel Sabaté

TV=target vessel. MI=myocardial infraction. TLR=target lesion revascularization. IVUS=intravascular ultrasound.

What will be the next frontier?

RES Technology Provides a Wide Range of Controlled Drug Delivery Options

Controlled release kinetics

Rapid (days) or prolonged (months) drugelution profiles can be achieved by modifying the reservoir inlay composition¹

Directional drug release

Towards the lumen or vessel wall²

Multiple drug delivery

 With independent release kinetics and direction³

- 1. Edelman E et al. Cardiac & Vascular Update. 2009;2:7-9.
- 2. Parker T et al. Release kinetics for a cilostazol eluting stent using RES TECHNOLOGY™. BioInterface 2009 Conference; October 26-28, 2009; San Mateo, CA.
- 3. Li C et al. Cilostazol and sirolimus dual drug eluting stent based on RES TECHNOLOGY™. Transcatheter Cardiovascular Therapeutics Conference (TCT 2009); September 21-25, 2009; San Francisco, CA.

RES Technology Provides a Wide Range of Controlled Drug Delivery Options

The reservoirs allow for different drug release combinations

Preferential directional release (NEVO™)

Dual drug in single reservoir bi-directional release (Future)

Dual drug in alternate reservoirs bi-directional release (Future)

Therapeutics Programs Utilizing RES TECHNOLOGY™

Thrombosis

Reduce stent thrombosis and DAPT dependence

Acute MI

Prevent "no-reflow" and reduce infarct size

Diabetes

Further reduce restenosis and improve clinical outcomes

Antithrombotic Stent Strategies

Sirolimus-eluting Stent with Antithrombotic Surface Modification

Design Features:

- Nanolayer of low molecular weight heparin covalently bound to bare metal surface
- Reservoirs loaded with sirolimus
 - Same dose and release kinetics as NEVO[™]
- Potential to inhibit both early and late stent thrombosis

RES Technology for Acute Myocardial Infarction

Objectives:

- Early reperfusion with a stent
- Elution of a therapeutic agent
- -Reduce stent thrombosis
- -Prevent no-reflow
- -Reduce infarct size
- Reduce clinical events
- -Mortality
- -LV dysfunction

-CHF

« No Reflow » Following Coronary Reperfusion

Jaffe, et. al., Circulation 2008;117:3152-3156

Significance:

- Impairs myocardial perfusion (TIMI III flow)
- Direct association with increased mortality

Causes:

- Distal embolization of thrombus
- Interstitial edema & swelling
- Endothelial damage
- Leukocyte plugging
- Vasospasm and constriction

Treatment strategies:

- Thrombus aspiration/extraction
- Pharmacologic agents
 - Adenosine
 - Nitric oxide
 - Calcium channel blockers
 - GP2b/3a inhibitors

Next-Generation Stent for Diabetics

Objective:

- Address unmet needs of the diabetic patient
- Further reduce neointimal proliferation, TLR, stent thrombosis

Sirolimus (abluminal)

Complementary therapeutic (luminal or abluminal)

- Antithrombotic
- Antiinflammatory
- Antiproliferative that synergizes with sirolimus

- RES TECHNOLOGY[™] provides a unique platform for intravascular drug delivery.
- Therapeutic programs in thrombosis, acute MI and diabetes are in progress.
- Promising candidates have been developed that are active in preclinical models.
- These devices have the potential to provide significant clinical benefit over current therapies.
- RES TECHNOLOGY[™], beginning with NEVO[™], will lead the next revolution in interventional cardiology and transform the treatment of vascular disease.