

24th-26th

2019

Lead positioning and stability for CRT

Gabriele Giannola Fondazione Istituto G. Giglio - Cefalù

Turin 26th October 2019

CRT

- Atrial lead
- RV lead
- LV lead

Success rate: Implant 95-98% Responder 50-90%

TURIN

October 24th-26th 2019

October 24th-26th

2019

LV LEAD POSITIONING

De novo LV lead positioning:

- How to choose the optimal position?

LV lead: lateral or postero-lateral in all cases?

Auricchio A. et al. Am J Cardiol 1999; 83:136D-42D

TURIN

October 24th-26th 2019

TURIN

October 24th-26th

2019

TURIN October 24th-26th 2019

Impact of left ventricular lead position in cardiac resynchronization therapy on left ventricular remodelling. A circumferential strain analysis based on 2D echocardiography

Michael Becker¹, Rafael Kramann¹, Andreas Franke¹, Ole-A. Breithardt², Nicole Heussen³, Christian Knackstedt¹, Christoph Stellbrink⁴, Patrick Schauerte¹, Malte Kelm¹, and Rainer Hoffmann^{1*}

Site of latest activation: Lateral 44% Anterior 25% Posterior 15% Inferior 7% Apical 9%

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

TURIN October 24th-26th 2019

Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy

The TARGET Study: A Randomized, Controlled Trial

Fakhar Z. Khan, MA,* Mumohan S. Virdee, MD,* Christopher R. Palmer, PHD,† Peter J. Pugh, MD,‡ Denis O'Halloran, BCH,‡ Philip A. Read, MD,* David Begley, MD,* Simon P. Fynn, MD,* David P. Dutka, DM,‡

Cambridge, United Kingdom

October 24th-26th

2019

Targeted LV lead position improves outcomes

CRT RESPONSE: 70% IN ECHO GUIDED PTS vs 55% IN CONTROL PTS (P < 0.05)

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

LV lead position: apical vs non apical

TURIN

October 24th-26th

2019

Thebault et al. Eur Heart J 2012; 33: 2662-71 Singh et al. Circulation 2011; 123: 1159-66

LV lead position

Delgado V et al. Circulation 2011; 123 (1): 70-8

October24th-26th

2019

LV LEAD POSITIONING

De novo LV lead positioning:

- How to choose the optimal position?

Patients already implanted with a LV lead:

- How to imrove CRT?

October 24th-26th

2019

Solutions

- Modification of the location of the LV lead
- Surgical approach
- LV dual site?
- LV endocardial

There Are Many Drivers for CRT NonResponse

Potential Reasons for Suboptimal CRT Response

TURIN

October 24th-26th

2019

Anatomy

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

CRT pacing challenges: Lead stability

Coronary Sinus Side Branches for Cardiac Resynchronization Therapy: Prospective Evaluation of Availability, Implant Success, and Procedural Determinants

GABOR Z. DURAY, M.D., STEFAN H. HOHNLOSER, M.D., and CARSTEN W. ISRAEL, M.D.

From the Department of Medicine, Division of Cardiology, Section Clinical Electrophysiology, J. W. Goethe University, Frankfurt, Germany

Duray et al. reported that in 21% (19/92) of cases with bipolar LV leads, the first pacing site chosen was not suitable due to lead instability and high pacing thresholds.

- LV Lead Challenges
 - Limited venous options
 - Difficulties with precise placement
 - Dislodgement and implant unpredictability

TURIN

October 24th-26th

2019

TURIN October 24th-26th 2019

Requirements of a good catheter for left ventricular pacing:

- 1. It must arrive at the most appropriate point
- 2. It must be stable
- 3. Must have good thresholds
- 4. It should not cause extra cardiac stimulation

CrossMark

TURIN October 24th-26th 2019

Overcoming an impossible anatomy with a novel left ventricular active fixation lead in the coronary sinus: A case report

Gabriele Giannola, MD, PhD, Riccardo Torcivia, MD, Riccardo Airò Farulla, MD, Joeri Heynens, MSc⁺¹

From the ^{*}Cardiology Unit, Fondazione Istituto San Raffaele, G. Giglio–Cefalù (PA), Italy, and [†]Medtronic Bakken Research Center, Maastricht, The Netherlands.

G. Giannola, Heart Rhythm CaseReports2015;1:130–132

TURIN

October 24th-26th 2019

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

TURIN October 24th-26th 2019

Left ventricular lead stabilization to retain cardiac resynchronization therapy at long term: when is it advisable?

Mauro Biffi¹^e, Matteo Bertini², Matteo Ziacchi¹, Igor Diemberger¹, Cristian Martignani¹, and Giuseppe Boriani¹

TURIN October 24th-26th 2019

Attain Stability[®] 20066 Active Fixation Lead

October 24th-26th 2019

TURIN

 $\begin{array}{c} October\\ 24^{th}\text{-}26^{th} \end{array}$

2019

Stability and safety

Large safety margin

Distance between helix tip to lead body prevents disturbance of neighboring arteries

Reposition with confidence

Helix diameter of .2 mm has shown negligible vein disturbance

Prevent over-rotation

Mechanical stop will prevent helix from over-rotating, protecting vein tissue

24th-26th 2019

Stability and safety

Implant a lead in CS is different to improve heart failure and survival reaching the best CRT. The best results in CRT need:

- the appropriate patient
- the appropriate timing
- the appropriate LV placing
- the appropriate technology
- the appropriate programming
- the appropriate pharmacological Tx

October 24th-26th 2019

Thank you for the attention

