ADVANCES IN CARDIOVASCULAR ARRHYTHMIAS AND GREAT INNOVATIONS IN CARDIOLOGY

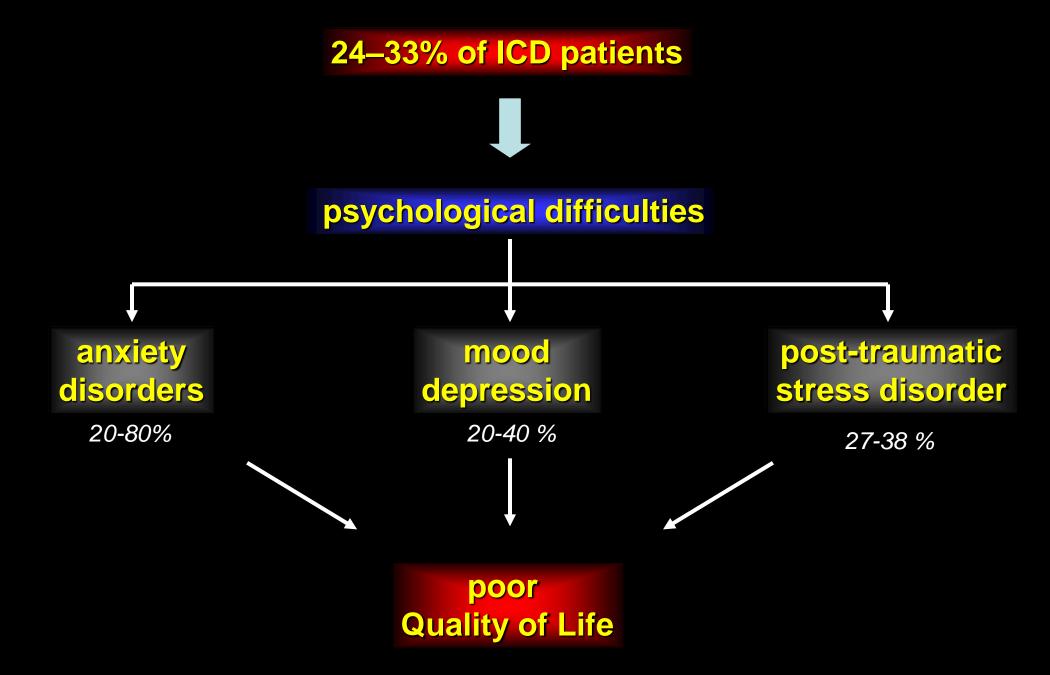
XXIV GIORNATE CARDIOLOGICHE TORINESI

DIRECTORS Fiorenzo Gaita | Sebastiano Marra

Turin, October 20-22, 2011 Centro Congressi Unione Industriale

III I BROWN DOLLARS AND ADDRESS OF TAXABLE ADDRESS

The psychological impact and burden of ICDs Turin , october 20


The psychiatrist's point of view

Riccardo Torta

Clinical and Oncological Psychology AOU San Giovanni Battista and University of Turin

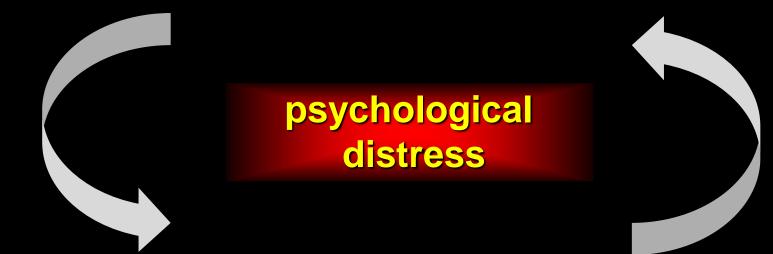
Cardiologie AOU San Giovenni Battista di Torini

CLINICAL ASPECTS

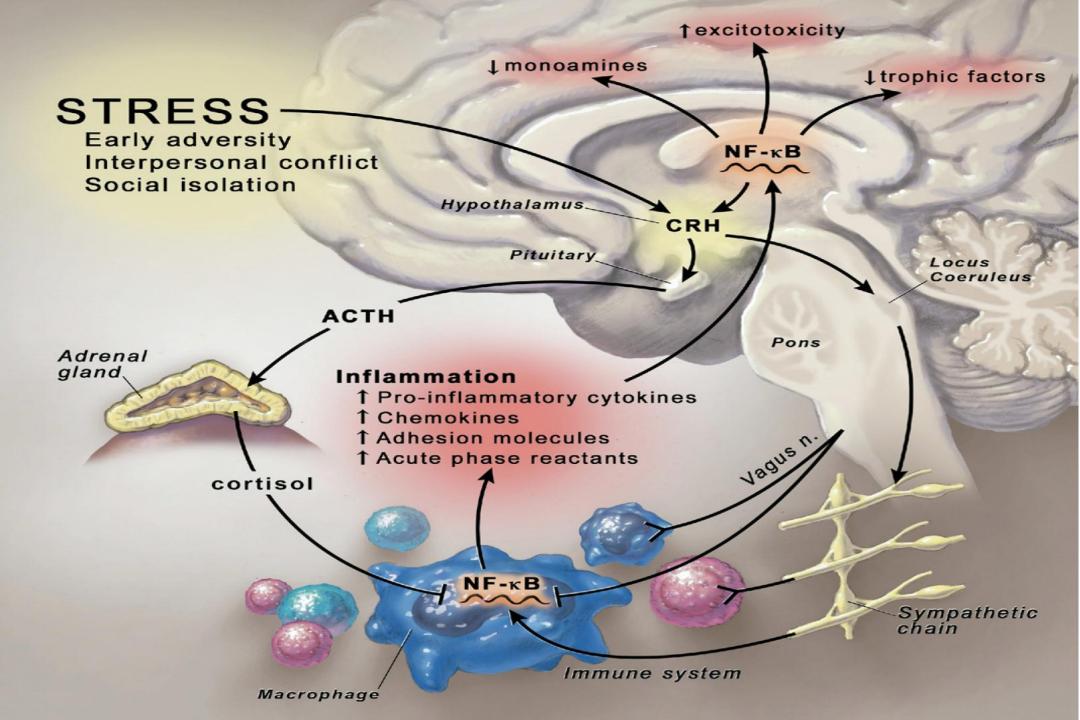
(Bilge et al., 2006; Ladwig et al., 2008; Habibovic et al., 2011)

Risk factors as markers for psychosocial attention

ICD specific

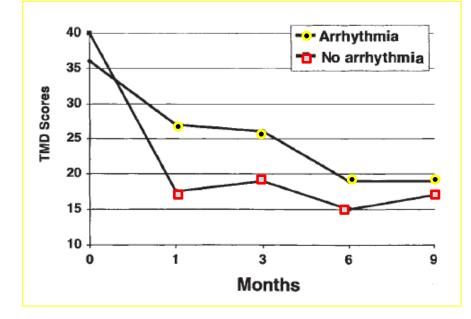

Younger ICD recipient (age < 50 years) Poor understanding (about pathology and ICD) High rate of device discharges ("ICD storm") Medical severity or comorbidity (diabetes)

Patient related


History of emotional problems (mood depression, anxiety) Poor social support (as perceived or family fears) Female gender (stress and pain sensitivity) Type D personality (alexytimia)

psychological distress and deterioration in QoL

precipitant

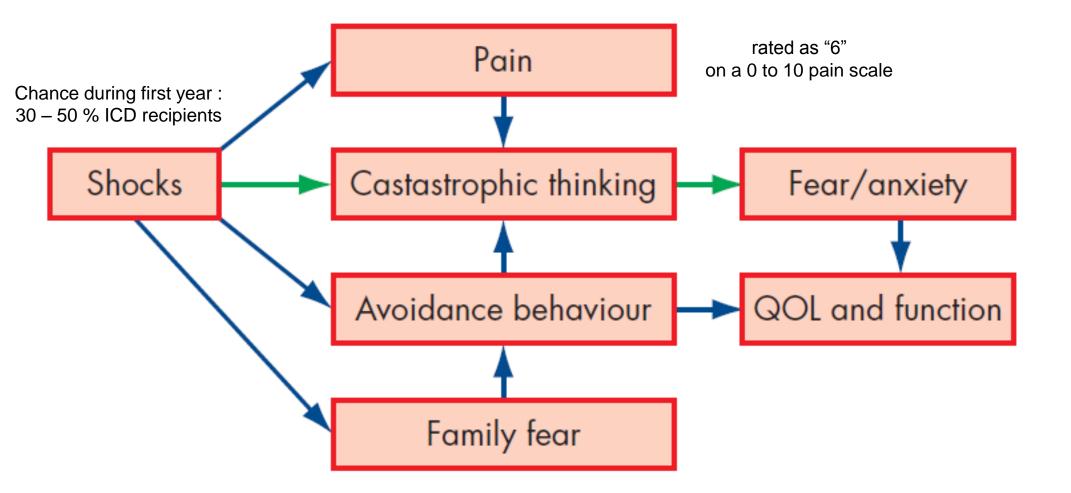


consequence

ASSOCIATION OF MOOD DISTURBANCE AND ARRHYTHMIA EVENTS IN PATIENTS AFTER CARDIOVERTER DEFIBRILLATOR IMPLANTATION

Sandra B. Dunbar, R.N., D.S.N.,^{1*} Laura P. Kimble, R.N., Ph.D.,¹ Louise S. Jenkins, R.N., Ph.D.,² Mary Hawthorne, R.N., Ph.D.,³ William Dudley, Ph.D.,⁴ Marina Slemmons, R.N., Ph.D.,¹ and Jonathan J. Langberg, M.D.⁵

moderate to severe depression among 645 patients with ICDs was associated with a **3.5-fold risk** of experiencing ICD shocks.


Hypothesized mechanisms:

neuroendocrine activation (from mental stress and anger), myocardial ischemia, and platelet dysfunction (Furukawa et al., 1989; Ironson et al., 1992) **Anxiety and tension,** heightens sympathetic arousal and imbalances between the sympathetic and parasympathetic systems which mediates an arrhythmogenic environment [Goldberg et al., 1996)

DEPRESSION AND ANXIETY 9:163-168 (1999)

Patients with catastrophic thinking have high anxiety scores and interpret bodily symptoms as signs of danger for sudden death Samuel F Sears Jr, Jamie B Conti

Heart 2002;87:488-493

Harm avoidance and adherence to treatments

Depression and Anxiety Status of Patients with Implantable Cardioverter Defibrillator and Precipitating Factors

AHMET KAYA BILGE,* BESTE OZBEN,* SABRI DEMIRCAN,+ MUTLU CINAR,* ERCUMENT YILMAZ,* and KAMIL ADALET* PACE 2006; 29:619–626

A. Depression Score **B. Anxiety Score** 20 20 12 16 p<0.05 16 p<0.05 10 p>0.05 p>0.05 12 12 Shock Present Shock Absent 8 **Depression Score Anxiety Score** 3-6 Months 6 Months - 1 Year 1-5 Years > 5 Years 3-6 Months 6 Months - 1 Year 1-5 Years > 5 Years

HADS: 46% anxiety and 41% depression

In female patients, depression and anxiety scores were found significantly higher compared to male patients (P = 0.046 and P = 0.016, respectively).

Posttraumatic Stress SymptomsArch Gen Psychiatry. 2008;65(11):1324-1330and Predicted Mortality in PatientsWith Implantable Cardioverter-Defibrillators

Karl-Heinz Ladwig, PhD, MD; Jens Baumert, PhD; Birgitt Marten-Mittag, PhD; Christof Kolb, MD; Bernhard Zrenner, MD; Claus Schmitt, MD

PTSD is characterized by intense fear, leading to the persistence of painful intrusive memories, avoidance behavior, and hyperarrousal

Table 4. Mortality Rates by Age Class and by Posttraumatic Stress Disorder (PTSD) Level in the Study Population

PTSD Level	Deaths, No. (%)	Total No.	Follow-up Period, Y	Person- Years	Mortality Rate per 1000 Person- Years
Age ≤60 y					
Low or moderate	5 (12.8)	39	5.9	230.0	21.7
High	5 (21.7)	23	4.7	108.0	46.3
Age $> 60 \text{ y}$					
Low or moderate	27 (38.6)	70	5.0	349.7	77.2
High	8 (53.3)	15	3.7	55.0	145.5
Total	45 (30.6)	147	5.1	742.7	60.6

Table 5. Effect of Posttraumatic Stress Disorder (PTSD) Symptoms on Mortality Risk Estimated by Cox Proportional Hazards Regression Models With Different Adjustments

Model and Adjustment	Hazard Ratio (95% Confidence Interval) ^a		Area Under the Curve	Hosmer- Lemeshow Goodness-of-Fit Test
Age, sex, survey Model 1: age, sex, survey, PTSD	2.44 (1)24-4.80)	 .01	0.75 0.76	12.4 6.1
Model 2: multivariate, PTSD ^b	3.21 (1.56-6.62)	.002	0.83	6.1
Model 3: multivariate, PTSD ^c	3.45 (1.57-7.60)	.002	0.83	9.9

substantial overlap between PTSD, depression, and anxiety.

2004 Blackwell Publishing Ltd, *Journal of Clinical Nursing*, 13, 194–200 The effects of age on quality of life in implantable cardioverter defibrillator recipients G. A. Hamilton and D. L. Carroll

S	F36 ⊢	ligher score: be	etter physical an	d mental health.			
		Mean scores a	nd SD \pm by time				
Summary scores*	n	T1-baseline	T2-6 months	T3-12 months	F	Р	
Physical health							oldor ago group:
Young	27	$47.1~\pm~9.4$	$46.1~\pm~9.3$	$46.3~\pm~10.2$	4.05	0.03	older age group:
Old	30	$38.1~\pm~10.3$	$44.4~\pm~10.2$	$41.3~\pm~12.2$			less physically active,
Mental health							less satisfied with their physical functioning
Young	27	44.6 ± 13.4	$49.2~\pm~9.9$	50.0 ± 12.5	2.2	n.s.	persistent anxiety at 6 and 12 months
Old	30	49.4 ± 9.6	$50.9~\pm~9.0$	49.4 ± 11.1			

POMS Higher score: more anxiety and depression.

		Mean scores a				
POMS	n	T1-baseline	T2-6 months	T3-12 months	F	Р
Anxiety						
Young	29	7.8 ± 5.1	3.1 ± 3.5	3.7 ± 4.5	19.19	0.0001
Old	29	$4.8~\pm~4.5$	3.2 ± 3.2	3.9 ± 4.0		
Depression						
Young	29	4.4 ± 4.7	$2.2~\pm~2.6$	2.6 ± 3.8	1.43	n.s.
Old	29	3.2 ± 3.4	2.2 ± 2.7	2.7 ± 3.6		

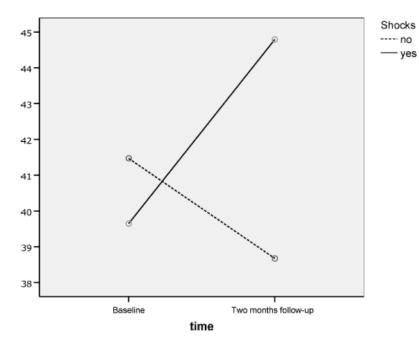
younger age group : higher improvement of anxiety and physical adjustment over time

Gender disparities in anxiety and quality of life in patients with an implantable cardioverter-defibrillator

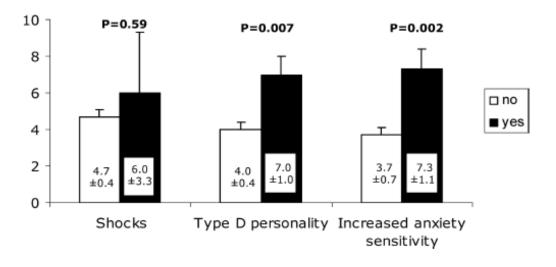
Europace doi:10.1093/europace/eur252

Mirela Habibović¹, Krista C. van den Broek¹, Dominic A.M.J. Theuns², Luc Jordaens², Marco Alings³, Pepijn H. van der Voort⁴, and Susanne S. Pedersen^{1,2*}

	physical functioning	SF F	RP F	RE F	MH F	vitality	BP F	GH F	Anxiety F
Time	3.07	1.03	5.14 [§]	4.66 [§]	11.36 [§]	0.64	2.61	2.75	2.42
Gender	7.14 [§]	0.73	1.50	0.88	0.25	4.88 [§]	2.65	0.20	2.67
Age	1.46	8.12 [§]	2.32	7.74 ⁹	3.10	8.39 [§]	1.10	14.12 ¹¹	7.85 [%]
Marital status (yes)	0.12	0.11	0.15	1.58	0.00	1.64	0.86	0.60	0.00
Smoking	3.44	3.45	2.28	3.30	3.31	7.08 [§]	2.05	4.06 [§]	3.91 [§]
Education (low)	10.71 ^{II}	1.92	9.82#	17.84#	12.67 ¹¹	13.04	5.31 [§]	2.58	18.81#
Working status (yes)	16.28#	14.88#	13.54 ^{II}	19.76#	0.01	5.05 [§]	2.84	12.69	10.14
Site of implantation	0.93	4.56 [§]	0.38	1.41	5.08 [§]	4.55 [§]	0.38	0.91	1.93
Indication	0.10	0.00	0.01	0.00	0.11	0.53	0.20	0.38	0.46
CAD ^a	1.36	0.66	2.01	0.43	0.38	0.06	3.06	5.14 [§]	0.23
CRT ^b	10.80	0.35	11.06	2.89	4.15 [§]	14.82#	0.01	11.99 ^{II}	1.46
Shocks ^c	0.08	0.88	1.35	0.65	0.15	0.09	0.02	0.97	2.47
Diabetes	17.23#	9.86 [§]	10.14 [§]	9.72 [§]	0.93	11.77 [§]	6.79	14.97	5.17 [§]
Type D personality	10.70	33.72#	15.67#	34.08#	122.96#	35.76#	9.07	45.16#	152.47#
Psychotropics	13.70#	22.49#	12.08 [§]	8.98 [§]	38.02#	21.77#	27.59#	12.55 [§]	26.23#
ACE-inhibitors	0.08	1.79	0.32	0.44	4.34 [§]	0.28	3.13	0.14	0.19
Amiodarone	1.99	2.32	0.06	0.05	0.20	0.97	0.45	0.89	1.22
Beta-blockers	0.26	0.08	2.76	0.27	0.41	0.07	0.17	4.32 [§]	0.23
Digoxin	0.30	1.80	0.15	0.00	0.58	0.58	1.48	2.61	2.30
Diuretics	22.38#	10.70	11.55 ^{II}	1.75	0.23	9.57	4.30 [§]	10.94	1.13
Statins	0.12	1.80	0.19	1.30	0.00	0.00	0.36	8P 0.05.	P , 0.01; #P


PF, Physical Functioning; SF, Social Functioning; RP, Role Physical Functioning; RE, Role Emotional Functioning; MH, Mental Health; VT, Vitality; BP, Bodily Pain; GH, General Health.

Shocks, Personality, and Anxiety in Patients with an Implantable Defibrillator PACE 2008; 31:850–857


KRISTA C. VAN DEN BROEK, M.A.,* IVAN NYKLÍČEK, PH.D.,* PEPIJN H. VAN DER VOORT, M.D.,† MARCO ALINGS, M.D., PH.D.,‡ and JOHAN DENOLLET, PH.D.*

Type D personality	DS14	Tendency to experience negative emotions and to inhibiti self-expression
Anxiety sensitivity	ASI	Tendency to be sensitive to and afraid of anxiety symptoms

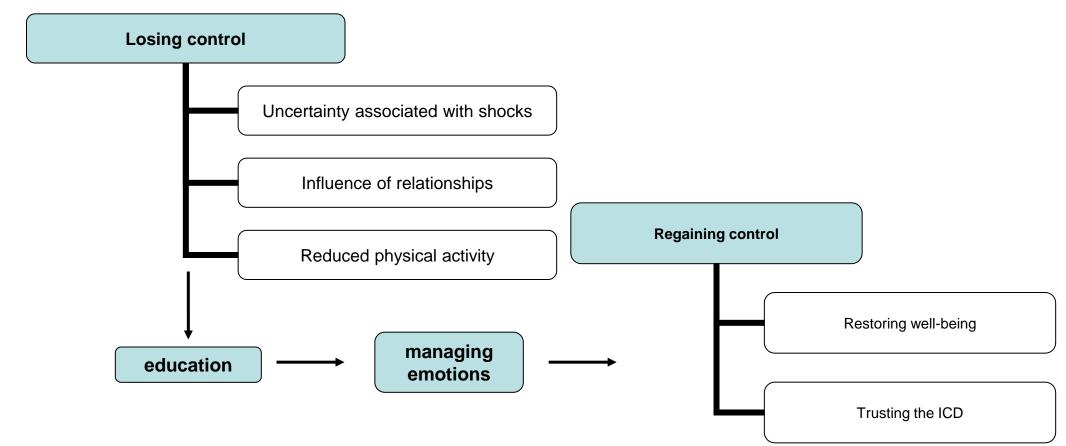
Estimated marginal means of self-reported anxiety as a function of the experience of a shock.

Interview-rated anxiety scores

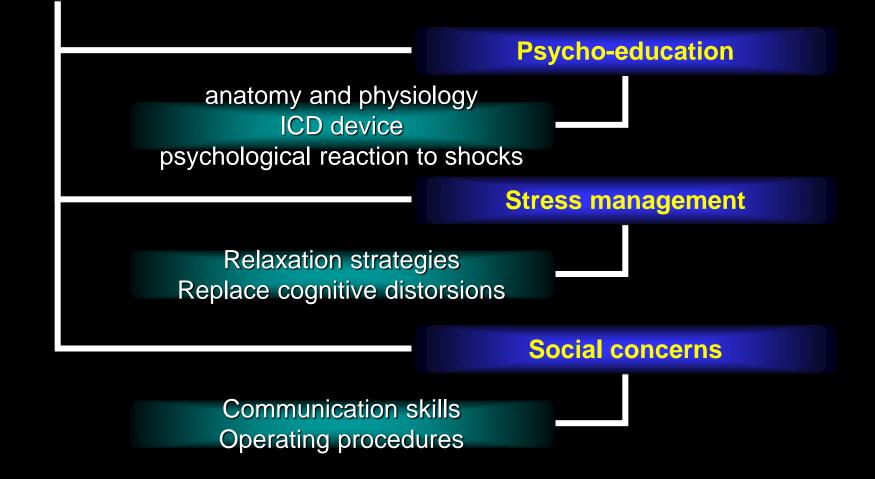
THERAPEUTIC APPROACHES

FAST SCREENING

scale	parameters	subscales
HADS	Anxiety depression	7+7 items (rated 0-3)
FPAS	ICD acceptance	positive appraisal body image deviced related distress return to function
FSAS	Shock-related anxiety	consequence factor trigger factor


HADS Hospital Anxiety Depression Scale ; FPAS Florida Patient Acceptance Survey; FSAS Florida Shock Anxiety Scale

JCN Journal of Clinical Nursing


Reconstructing unpredictability: experiences of living with an implantable cardioverter defibrillator over time

Ingvild Margreta Morken, Elisabeth Severinsson and Bjørg Karlsen

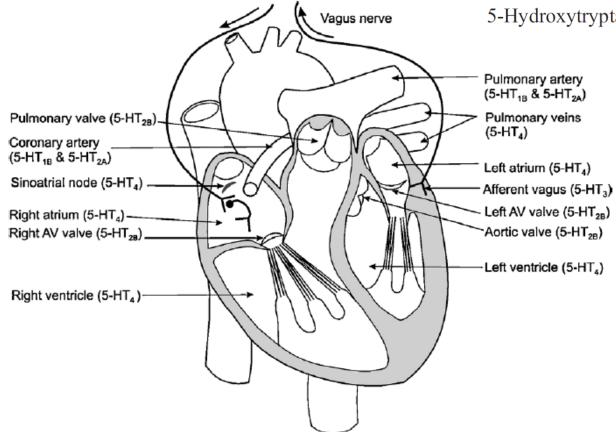
2009 Blackwell Publishing Ltd, Journal of Clinical Nursing, 19, 537-546

Cognitive behavior approach

Serotonergic activity has been related to the pathophysiology of heart failure (HF) and arrhythmogenesis

Reboxetine Fluoxetine **NARIs** Fluvoxamine **SSRIs** Paroxetine Sertraline melatonergic Citalopram agomelatine 5HT and NE Escitalopram dysregulation **Bupropione NDRIs TCAs SNRIs** Amitriptyline Venlafaxine Clomipramine Duloxetine

Jaffré et al. Circulation 2004; 110:969–974.


SSRIs effectiveness on:

functional capacity, neurohumoral biomarkers, and psychiatric symptoms in patients with IHD and depression.

Sheline et al. Am J Med 1997; 102:54–59. Lesperence et al. JAMA 2007; 297:367–379. Rivelli and Jiang Curr Opin Cardiol 2007; 22:286–291. O'Connor et al. Arch Intern Med 2008; 168:2232–2237.

> SSRIs may reduce the likelihood of arrhythmias

Kuijpers et al. Gen Hosp Psychiatry 2002; 24:181–184. **Shiravama et al**. Am J Cardiol 2006; 97:1749–1751.

5-Hydroxytryptamine receptors in the human cardiovascular system

Pharmacology & Therapeutics 111 (2006) 674-706

Alberto J. Kaumann^{a,*}, Finn Olav Levv^{b,c}

Functional effects mediated through the different 5-HT receptors in the human cardiovascular system

5-HT receptor	Human cardiovascular function	References
5-HT _{1A}	Renal vascular dilation?	Verbeuren et al., 1991
5-HT _{1B}	Vasoconstriction	Kaumann et al., 1993
	Cerebral arteriolar dilation	Elhusseiny & Hamel, 2001
5-HT _{1D}	Vascular nerve endings?	Verheggen et al., 1998, 2004
5-HT _{1E}	Unknown	
5-HT _{1F}	Unknown	
5-HT _{2A}	Vasoconstriction	Kaumann et al., 1993
	Platelet aggregation	De Clerck et al., 1984
5-HT _{2B}	Valvulopathy	Fitzgerald et al., 2000
	Vasodilation?	Glusa & Pertz, 2000
	Embryology?	Nebigil et al., 2000a
	Pulmonary hypertension?	Launay et al., 2002
5-HT _{2C}	Unknown	
5-HT _{3A} /	Reflex bradycardia?	Mohr et al., 1987
5-HT _{3B}	Pain?	Fu & Longhurst, 2002
5-HT ₄	Cardiostimulation	Kaumann & Sanders, 1998
		Brattelid et al., 2004a, 2004b
	Pulmonary vein dilation?	Cocks & Arnold, 1992
5-HT _{5A}	Unknown	
5-HT ₆	Unknown	
5-HT ₇	Vascular relaxation?	Schoeffter et al., 1996

The Role of the Selective Serotonin Re-Uptake Inhibitor Sertraline in Nondepressive Patients with Chronic Ischemic Heart Failure: A Preliminary Study

DIONYSSIOS LEFTHERIOTIS, M.D.,* PANAYOTA FLEVARI, M.D.,* IGNATIOS IKONOMIDIS, M.D.,* ATHANASIOS DOUZENIS, M.D.,+ CHRISOVALANDIS LIAPIS, M.D.,* IOANNIS PARASKEVAIDIS, M.D.,* EFSTATHIOS ILIODROMITIS, M.D.,* LEFTERIS LYKOURAS, M.D., PH.D.,* and DIMITRIOS TH. KREMASTINOS, M.D., PH.D.*

PACE 2010; 33:1217–1223

demographics Age (years) $62 \pm 13 65 \pm 15$		Initial e	valuation	Follo (12 m		
Male/female ra NYHA class I NYHA class I	:32% / 34%	Sertraline group	Control group	Sertraline group	Control group	
HVR parameters	SDNN (ms)	84 <u>+</u> 28	86 <u>+</u> 27	115 <u>+</u> 32*	83 <u>+</u> 26	reduced CN
Arrhytmic events	VEs	563 <u>+</u> 241	537 <u>+</u> 235	261 <u>+</u> 131*	558 <u>+</u> 220	down-regi ventricula

HP: reduced sympathetic CNS activity

HP: down-regulation of some ventricular 5HT receptors

•p< 0.001

HRV = heart rate variability;

SDNN = standard deviation of all normal R-R intervals

VEs = ventricular extrasystoles