

Automated functions and remote monitoring in patients with a pacemaker: which are the advantages?

Dr.ssa Chiara Bartoli Ospedale SS. Giacomo e Cristoforo – Massa (MS)

Torino 24 ottobre 2015

INTRODUCTION

Number of PM patients Complexity of algorithms (requiring training) Old leads Economic resources Time Environmental resources

Device Automaticy: useful or needless?

Pacemaker Automatic Functions

Automatic functions purposes	Examples
Safety	Lead polarity switch Autosensing A&V capture control
Battery longevity	A&V capture control Spontaneous rhythm algorithms
Heart rate management	Dynamic adaptation of sensor rate
Arrhythmias management	Automatic switch mode Afib prevention
Syncope management	CLS, SDR, RDR
Implant management easiness	Auto implant detection Auto polarity configuration
Remote monitoring	

Pacemaker Automatic Functions

excellance for life

Marco Alings^{1*†}, Elisa Vireca^{2†}, Dirk Bastian³, Alexander Jacques Wardeh⁴, Christopher Nimeth⁵, Raymond Tukkie⁶, Susanne Trinks⁷, Walter Kainz⁸, Colleen Delaney⁹, and Gert Kaltofen¹⁰ for the AUTOMATICITY Study Investigators

- Observational, prospective, multisite, non randomized study
- 915 patients with PM and at least one automaticity algorithm programmed to the automatic mode (817 had all available automaticity algorithms programmed ON/AUTO)
- 12 mesi fw
- Automaticity algorithms evaluated:
 - Automatic Capture
 - Ventricular and Atrial Autosense
 - Automatic rate response sensors

Alings et al, Europace (2011) 13, 976-983

Marco Alings^{1*†}, Elisa Vireca^{2†}, Dirk Bastian³, Alexander Jacques Wardeh⁴, Christopher Nimeth⁵, Raymond Tukkie⁶, Susanne Trinks⁷, Walter Kainz⁸, Colleen Delaney⁹, and Gert Kaltofen¹⁰ for the AUTOMATICITY Study Investigators

86.1% patients free from any algorithm reprogramming

Alings et al, Europace (2011) 13, 976-983

Marco Alings^{1*†}, Elisa Vireca^{2†}, Dirk Bastian³, Alexander Jacques Wardeh⁴, Christopher Nimeth⁵, Raymond Tukkie⁶, Susanne Trinks⁷, Walter Kainz⁸, Colleen Delaney⁹, and Gert Kaltofen¹⁰ for the AUTOMATICITY Study Investigators

Of all reprogrammings, 67,8% occurred in the fist 6 months of follow-up.

DIGTRONIK axcellance for life

Marco Alings^{1*†}, Elisa Vireca^{2†}, Dirk Bastian³, Alexander Jacques Wardeh⁴, Christopher Nimeth⁵, Raymond Tukkie⁶, Susanne Trinks⁷, Walter Kainz⁸, Colleen Delaney⁹, and Gert Kaltofen¹⁰ for the AUTOMATICITY Study Investigators

Table 3 List of reasons for reprogramming and their occurrences

Reasons for reprogramming n %
Unintentional or algorithm N/A 49 1.8
Others—not AE/algorithm related 42 1.5
Lead repositioning procedures 7 0.3
Other surgical procedures 3 0.1
Ventricular oversensing 17 0.6
Unsatisfactory threshold test 12 0.4
Unsatisfactory rate response 10 0.4
Atrial oversensing 8 0.3
Atrial undersensing 8 0.3
Ventricular undersensing 0 0.0
Overall 156 5.7

Reprogrammings for the algorithm performance occurred in 2% of all active algorithms (55 of 2736)

Alings et al, Europace (2011) 13, 976-983

Marco Alings^{1*†}, Elisa Vireca^{2†}, Dirk Bastian³, Alexander Jacques Wardeh⁴, Christopher Nimeth⁵, Raymond Tukkie⁶, Susanne Trinks⁷, Walter Kainz⁸, Colleen Delaney⁹, and Gert Kaltofen¹⁰ for the AUTOMATICITY Study Investigators

Out of the 55 reprogrammings related to the automatic algorithms only 10 were associated with serious adverse events

	% free reprogramming	% reprogramming any reason	% issues algorithm	Adverse event related to algorithm		
AUTOMATIC CAPTURE	95.9%	4.1%	0.4%	3 DIZZINESS 1 SYNCOPE		
AUTOSENSE ATRIAL AUTOSENSE VENTR	94.3%	6.7% 5.7%	0.6% 0.6%	1 PALPITATION 1 DIZZINESS		
AUTOLIFESTYLE	93.9%	6.1%	0.4%	4 PALPITATION		

excellence for life

Actual Pacemaker Longevity: The Benefit of Stimulation by Automatic Capture Verification

MAURO BIFFI, M.D., MATTEO BERTINI, M.D., PH.D., DAVIDE SAPORITO, M.D., MATTEO ZIACCHI, M.D., CRISTIAN MARTIGNANI, M.D., PH.D., IGOR DIEMBERGER, M.D., PH.D., and GIUSEPPE BORIANI, M.D., PH.D., From the Institute of Cardiology, University of Bologna, Bologna, Italy

Biffi et al, PACE (2010) 33, 873-881

Long-Term RV Threshold Behavior by Automated Measurements: Safety is the Standpoint of Pacemaker Longevity!

MAURO BIFFI, M.D., MATTEO BERTINI, M.D., PH.D., ANDREA MAZZOTTI, M.D., BEATRICE GARDINI, M.D., VALENTINA MANTOVANI, M.D., MATTEO ZIACCHI, M.D., CINZIA VALZANIA, M.D., PH.D., CHRISTIAN MARTIGNANI, M.D., PH.D., IGOR DIEMBERGER, M.D., PH.D., and GIUSEPPE BORIANI, M.D., PH.D. From the S.Orsola-Malpighi Hospital, Institute of Cardiology, University of Bologna, Bologna, Italy

Threshold increase 12.8%pts

- DUVU KORIK excellance for life

Biffi et al, PACE (2011) 34: 89 - 95

Long-Term RV Threshold Behavior by Automated Measurements: Safety is the Standpoint of Pacemaker Longevity!

MAURO BIFFI, M.D., MATTEO BERTINI, M.D., PH.D., ANDREA MAZZOTTI, M.D., BEATRICE GARDINI, M.D., VALENTINA MANTOVANI, M.D., MATTEO ZIACCHI, M.D., CINZIA VALZANIA, M.D., PH.D., CHRISTIAN MARTIGNANI, M.D., PH.D., IGOR DIEMBERGER, M.D., PH.D., and GIUSEPPE BORIANI, M.D., PH.D. From the S.Orsola-Malpighi Hospital, Institute of Cardiology, University of Bologna, Bologna, Italy

..."According to the absolute value and to the timing of RVPT increase, we identified seven patients (2.1%) who would have experienced exit block in the event a fixed output stimulation as 2.5 V at 0.4 ms had been programmed at FU"...

Clinical evaluation of pacemaker automatic capture management and atrioventricular interval extension algorithm

Ke-ping Chen¹, Geng Xu², Shulin Wu³, Baopeng Tang⁴, Li Wang⁵, and Shu Zhang^{1*}, for the China PANORAMA Study Investigators

¹Clinical EP Lab and Arrhythmic Center, Fuwai Hospital, Beijing, China; ²Department of Cardiovascular Disease, Second Affiliated Hospital Zhejiang University College of Medicine, Hangzhou, China; ³Guangdong Cardiovascular Institute, Guangdong Providal People's Hospital, Guangzhou, China; ⁴Department of Cardiovascular Disease, First Affiliated Hospital of Xinjiang Medical University, Urumuqi, China; and ⁵Medtronic, Inc., Minneapolis, MN, USA

Chen et al, Europace (2013) 15, 395-401

Pacemaker Automatic Functions

SAFETY LONGEVITY RHYTHM PERFORMANCE CARDIAC PERFORMANCE

EASIER FOLLOWUP REDUCED COSTS

COMPLEXITY OF ALGORITHMS

REMOTE MONITORING SYSTEMS

REMOTE MONITORING SYSTEMS

BIOTRONIK

Office PACEMAKER Follow-up

- PATIENT CLINICAL STATUS
- CAN LOCAL TOLERANCE

DEVICE PARAMETERS

- o THRESHOLDS
- o LEAD IMPEDANCE
- BATTERY VOLTAGE
- 0

RHYTHM

- ARRHYTMIC EVENTS
- o IEGM
- o % PACING
- DEVICE REPROGRAMMING
- DRUG TREATMENT OPTIMISATION

Workload for PM follow-up

Pacemakers - Units per million inhabitants

OFFICE PM FOLLOW-UP LIMITATION

- LARGE COHORT OF PATIENTS REQUIRING SYSTEMATIC FOLLOW-UP
- IN THE MAJORITY OF SCHEDULED VISITS, THE DEVICE PROGRAMMING OR DRUG REGIMEN IS LEFT UNCHANGED
- NO CORRELATION BETWEEN SCHEDULED VISIT AND CLINICAL E/O TECHNICAL EVENT
- REAL BENEFIT OF IMPLANT CENTRE CONTROL?
 - DEVICE DYSFUNCTION ?
 - EVENT ANALYSIS ?
 - DEVICE REPROGRAMMING ?
 - PREDICTION UNEXPECTED EVENT ?

REMOTE PACEMAKER FOLLOW UP EXPECTED ADVANTAGES

CARE IMPROVEMENT

- EASY DEVICE FOLLOW-UP
- EOL MANAGEMENT
- EARLY DETECTION OF CLINICAL AND DEVICE-RELATED ADVERSE EVENTS
- REDUCTION OF HOSPITALISATIONS

COST REDUCTION

- REDUCED NUMBER OF AMBULATORY VISITS
- REDUCTION OF HOSPITALISATION
- REDUCED COSTS OF TRANSPORTATION

REMOTE PM FOLLOW-UP

- PACEMAKER REMOTE FEATURES LIMITED TO SOME MANUFACTORS (MOST OLD DEVICES EXCLUDED)
- ONLY A FEW STUDIES OF PERMANENTLY PACED PATIENTS HAVE BEEN PUBLISHED
- PROSPECTIVE TRIAL IN PM PATIENTS

COMPAS STUDY (Eur Heart J, 2012)

Compas Study - Design

The study investigates whether Home-Monitoring followup of PM patients is as efficient as conventional method in terms of Significant Serious Adverse Event (SSAE).

Compas Study – Primary endpoint SAFETY

The study investigates with a non-inferiority hypothesis whether remote monitoring has an impact on the incidence of Serious Adverse Events* (SAE) comprising:

- Death (all causes)
- Cardiovascular SAE
- Device related SAE

COMPAS STUDY SECONDARY ENDPOINTS

- COMPARE THE INCIDENCE OF SAE IN BOTH GROUPS
- MEASURE THE DECRESASE IN THE NUMBER OF IN-OFFICE FOLLOW-UP
- RETROSPECTIVELY ANALYSE THE DELAY IN THE MANAGEMENT OF ADVERSE EVENT IN BOTH GROUPS
- EFFECT OF REMOTE MONITORING ON QUALITY OF LIFE

Population

Clinical characteristics similar in both study groups

	ACTIVE	CONTROL		
Number of patients	269	269		
Age	76±9	77±8		
Gender (male)	180 (67%)	170 (63%)		
EF (%)	59±13	56±12		

p=n.s

Primary PM indications

COMPAS STUDY PRIMAR ENDPOINT

Survival Probability for Combined End Points

Deaths			
Deaths	ACTIVE (n=248)	CONTROL (n=246)	
Stroke	0	4	
Heart failure	3	0	
Cancer	6	3	
Non cardiac cause	6	4	
Unknown cause	3	2	
TOTAL	18 (7,3%)	13 (5,3%)	

ACTIVE (n=248)	CONTROL (n=246)		
0	4		
0	2		
2	1		
0	1		
2 SAE (1 pt: 0,4%)	8 SAE (7 pts: 2,8%)		
	ACTIVE (n=248) 0 0 2 0 2 SAE (1 pt: 0,4%)		

P=0.03

ardiovascular	AC1 (n=	248)	CONTROL (n=246)		
SAE	Events	Patients	Events	Patients	
Ventricular arrhythmia	1	1	1	1	
Atrial arrhythmia	4	4	10	10	
Stroke	2	2	8	7*	
Heart failure	18	13 **	6	6	
Acute Coronary Event	6	5	6	6	
Valvular heart disease	2	2	1	1	
Pericardial disease	2	2	0	0	
Other	2	2	1	1	
TOTAL	37 SAE (29 pts: 11,7%)		33 SAE (32 pts: 13,0%)		

* Including 4 deaths

C

** Including 3 deaths

p=ns

Cardiovascular		AC1 (n=	IVE 248)	CONTROL (n=246)		
	SAE		Patients	Events	Patients	
	Ventricular arrhythmia	1	1	1	1	
	Atrial arrhythmia & related stroke	6 Pa	6 Patients		17 Patients	
p<0.01 OR:0.33 (95%IC 0.13-0		18	13 **	6	6	
		0.86)	5	6	6	
	Valvular heart disease	2	2	1	1	
	Pericardial disease	2	2	0	0	
	Other	2	2	1	1	
	TOTAL	37 SAE (29 pts: 11,7%)		33 SAE (32 pts: 13,0%)		

* Including 4 deaths

** Including 3 deaths

Medical Reaction Delay

* To allow a retrospective analysis, the control group patients were equipped with Blinded Remote Monitoring.

CLINICAL CASE (Control group)

axcellence for life

PM detected atrial tachyarrhythmia and prognosis

Risk of clinical atrial tachyarrhythmia

ASSERT Trial

Risk of ischemic stroke or systemic embolism

Healey JS, NEJM 2012; 366: 120-9

Reduction of atrial fibrillation in remotely monitored pacemaker patients: results from a Chinese multicentre registry

CHEN Ke-ping, DAI Yan, HUA Wei, YANG Jie-fu, LI Kang, LIANG Zhao-guang, SHEN Fa-rong, CHEN Si-lin, SU Yan-gang, DING Yan-sheng and ZHANG Shu

Figure 1. Atrial fibrillation (AF) burden trend for 141 patients developing AF after dual-chamber pacemaker implantation. Each data point designates a mean value for a 10-day period. Day 0 is the day of initial AF detection by Home Monitoring. Screening by Home Monitoring lasted for 180 days after day 0. *P < 0.05 compared with the 12.0% value for days 1–10.

Figure 3. Atrial fibrillation (AF) burden trend for 21 patients developing AF after biventricular pacemaker implantation. Further explanations as in Figure 1. *P < 0.05 compared with the 12.2% value for days 1–10.

excellence for life

Chin Med J 2013;126 (22): 4216-4221

Total Follow-Ups over time 601 FUs in Control group vs 389 FUs in Active group

PM Remote FU - Potential Advantage

 Early detection of atrial arrhythmias need for anticoagulation ? need for antiarrhythmic treatment ?

limits: false-positive

-> need for a prospective interventional study

- Lead integrity
- Battery status: closed to EOL

-> delayed can replacement

Dicrease in « face to face » visits

Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial

Gerhard Hindricks, Milos Taborsky, Michael Glikson, Ullus Heinrich, Burghard Schumacher, Amos Katz, Johannes Brachmann, Thorsten Lewalter, Andreas Goette, Michael Block, Josef Kautzner, Stefan Sack, Daniela Husser, Christopher Piorkowski, Peter Søgaard, for the IN-TIME study group*

Figure 1: Trial profile

Patients were randomly assigned (1:1) to receive telemonitoring in addition to standard care or to standard care without telemonitoring for 12 months.

Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial

Gerhard Hindricks, Milos Taborsky, Michael Glikson, Ullus Heinrich, Burghard Schumacher, Amos Katz, Johannes Brachmann, Thorsten Lewalter, Andreas Goette, Michael Block, Josef Kautzner, Stefan Sack, Daniela Husser, Christopher Piorkowski, Peter Søgaard, for the IN-TIME study group*

Primary outcome: worsening of a composite clinical score at 12 months (death or hospital admission for heart failure, NYHA functional classification, global self-assessment)

Lancet 2014; 384: 583-90

Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME): a randomised controlled trial

Gerhard Hindricks, Milos Taborsky, Michael Glikson, Ullus Heinrich, Burghard Schumacher, Amos Katz, Johannes Brachmann, Thorsten Lewalter, Andreas Goette, Michael Block, Josef Kautzner, Stefan Sack, Daniela Husser, Christopher Piorkowski, Peter Søgaard, for the IN-TIME study group*

	Number of patients		nber of patients Number of events		Odds ratio (95% CI)			Pinteraction
	Tele- monitoring group	Control group	Tele- monitoring group	Control group			value	
Age (years)								0.71
≤67years	182	170	29	37		·68 (0·40-1·17)	0.16	
>67years	151	161	34	53		·59 (0·36–0·98)	0.042	
LVEF within 3 month	15							
of enrolment*								0.58
≤25%	168	166	36	46		·71 (0·43–1·18)	0.18	
>25%	150	151	25	39	0	-57 (0-33-1-01)	0.054	
Sex								0.71
Men	274	262	53	71		·65 (0·43-0·97)	0.034	
Women	59	69	10	19	0	·54 (0·23-1·27)	0.16	
NYHA at enrolment	•							0.16
II.	150	135	16	29	0	·44 (0·23–0·85)	0.014	
III	182	196	47	61	0	·77 (0·49-1·21)	0.26	
NYHA at 1 month*								0.53
1-11	233	223	42	54		·69 (0·44–1·08)	0.11	
III-IV	99	108	21	36	0	·54 (0·29-1·01)	0.053	
History of atrial fibri	llation*							0.044
No	257	238	50	55		·80 (0·52–1·24)	0.32	
Yes	76	92	13	35	0	34 (0.16-0.70)	0.003	
Device type								0.58
ICD	143	131	20	30	0	·55 (0·29-1·02)	0.058	
CRT-D	190	200	43	60		·68 (0·43-1·08)	0.10	
ACE/ARB use at enro	Iment							0.31
No	26	45	9	15		06 (0.38–2.93)	0.91	
Yes	307	286	54	75	0	·60 (0·41-0·89)	0.011	
All	333	331	63	90	0	·63 (0·43-0·90)	0.012	
				5				
				Telem	onitoring worse Control worse			

excellance for life

Lancet 2014; 384: 583-90

CONCLUSIONS

- PM Automated Functions and Remote Monitoring have demonstrated a positive impact in terms of safety, battery longevity, reduction of costs and hospitalization, reduction of serious adverse events
- The great number of automated functions makes advisable a continuous training of the operators
- Remote monitoring requires a clear shared procedure for the clinical and administrative management of patients data

