

#### XXIV Giornate Cardiologiche Torinesi

Torino, 20-22 Ottobre 2011

Modern Approach to Treatment of Heart Failure

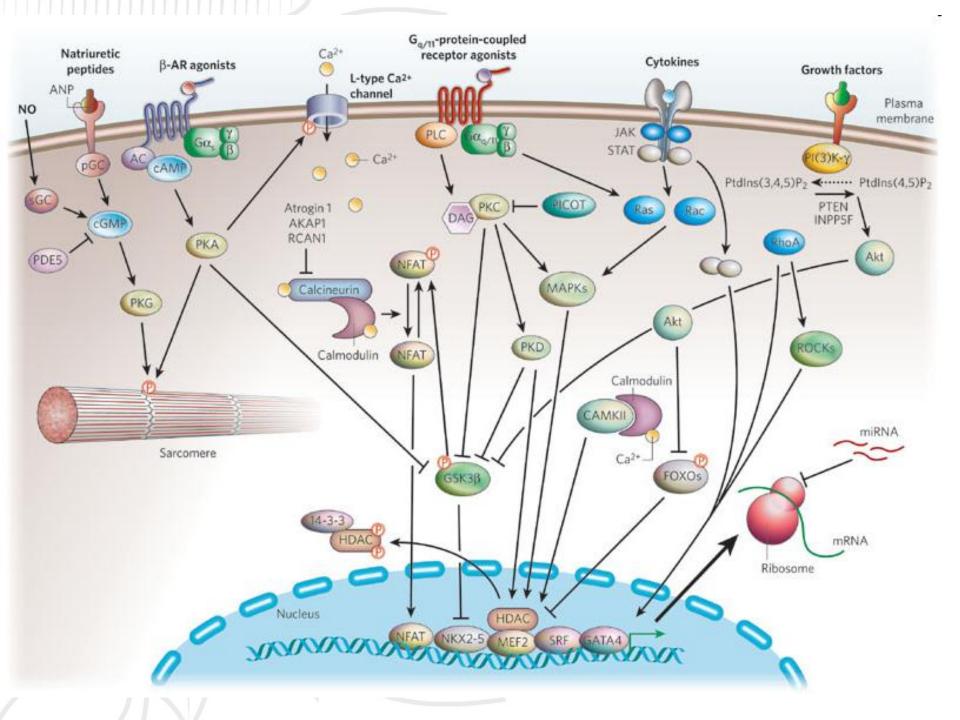
## Role of Biomarkers in Management of HF Patients

Maria Teresa La Rovere Istituto Scientifico di Montescano (Pavia)



#### Congestive Heart Failure: Fifty Years of Progress

Eugene Braunwald, MD; Michael R. Bristow, MD, PhD


.." Thus the view of chronic myocardial failure as an irreversible, end-stage process, is being supplanted by the idea that it is possible to effect true biologically based improvement in the intrinsic defects of function and structure that afflict the chronically failing heart."

Circulation 2000; 102 (suppl 4): IV 14-IV 23



#### Biomarkers in Heart Failure

| Biomarker                              | Suggested clinical applications    | Biomarker                                                 | Suggested clinical applications                                  |
|----------------------------------------|------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| Neurohormones<br>Catecholamines        | Prognosis                          | Oxidative stress                                          | -                                                                |
|                                        | Prognosis                          | Oxidized low-dehsity lipoproteins                         | Prognosis                                                        |
| Renin-angiotensin-aldosterone          | Prognosis                          | Myeloperoxidase (MPO)                                     | Prognosis                                                        |
| system (RAAS)                          | Diagnosis prognosis risk           | Urinary piopyrrins                                        | Prognosis                                                        |
| Natriuretic peptides (ANP, BNP,        | Diagnosis, prognosis, risk         | Urinary and plasma isoprostanes<br>Plasma malondialdehyde | Prognosis                                                        |
| NT-proBNP, MR-proANP and other         | stratification, therapy monitoring | Gamma-glutamyl transferases (GGT)                         | Diagnosis<br>Prognosis                                           |
| related peptides)                      | P                                  | Uric acid                                                 | Prognosis                                                        |
| Arginine vasopressin and copeptin      | Prognosis                          | Matrix and cellular remodelling                           | Prognosis                                                        |
| Endothelin                             | Prognosis, therapeutic target      | Matrix metalloproteinases (MMPs)                          | Prognosis, risk stratification, aid in                           |
| Chromogranin A and B                   | Diagnosis                          | and MPP tissue inhibitors (TIMPs)                         | elucidating the HF pathogenesis                                  |
| Adrenomedullin                         | Prognosis                          | Collagen propeptides                                      | Prognosis                                                        |
| Myocyte injury                         |                                    | Propeptide procollagen type I and III                     | Prognosis                                                        |
| Cardiac troponins (cTnI and cTnT)      | Diagnosis, prognosis, risk         | Osteopontin (OPN) (and other                              | Prognosis, aid in elucidating the HF                             |
|                                        | stratification                     | matricellular proteins)                                   | pathogenesis                                                     |
| Heart-type fatty acid binding protein  | Diagnosis, prognosis, risk         | Galectin-3                                                | Prognosis, risk stratification                                   |
| (H-FABP)                               | stratification                     | Endothelial dysfunction                                   |                                                                  |
| Myosin light-chain kinase I            | Prognosis                          | Adnesion molecules (ICAM,                                 | Prognosis                                                        |
| Fas (APO-1)                            | Prognosis                          | selectin-P)                                               |                                                                  |
| Pentraxin (PTX)3                       | Prognosis, risk stratification     | Endothelin                                                | Prognosis, therapeutic target                                    |
| Inflammation                           |                                    | Adiponectin                                               | Prediction of HF incidence,                                      |
| C-reactive protein                     | Prognosis, risk stratification     |                                                           | prognosis, risk stratification                                   |
| Cytokines and related receptors        | Prognosis, risk stratification     | Homocysteine                                              | Prediction of HF incidence                                       |
| (IL-1, IL-2, IL-6, IL-8, IL-18, TNFα,  |                                    | C-type natriuretic peptide (CNP)                          | Diagnosis, prognosis, aid in                                     |
| growth differentiation factor 15, ST2) |                                    |                                                           | elucidating the HF pathogenesis                                  |
| PTX3                                   | Prognosis, risk stratification     | Other markers (organ failure, cachexia, co                |                                                                  |
| Adipokines (adiponectin, leptin,       | Prediction of HF incidence,        | Triiodothyronine                                          | Prognosis, risk stratification                                   |
| resistin, ghrelin)                     | prognosis, risk stratification     | Cystatin C                                                | Prognosis, risk stratification                                   |
| Procalcitonin                          | Prognosis                          | Plasminogen activator inhibitor                           | Prognosis, risk stratification                                   |
| Neopterin                              | Prognosis                          | (PAI)-1                                                   | Prognesis risk stratification                                    |
| Osteoprotegerin                        | Prognosis, risk stratification     | Cholesterol<br>Urinary albumin-to-creatinine ratio        | Prognosis, risk stratification<br>Prognosis, risk stratification |
|                                        | · XI VIIIIIIII                     | Haemoglobin                                               | Prognosis                                                        |
|                                        |                                    | Creatinine, glomerular filtration rate                    | Prognosis                                                        |
|                                        |                                    | Creatinine, gioinerulai intration fate                    | FIOGIOSIS                                                        |





#### Treatment of Heart Failure

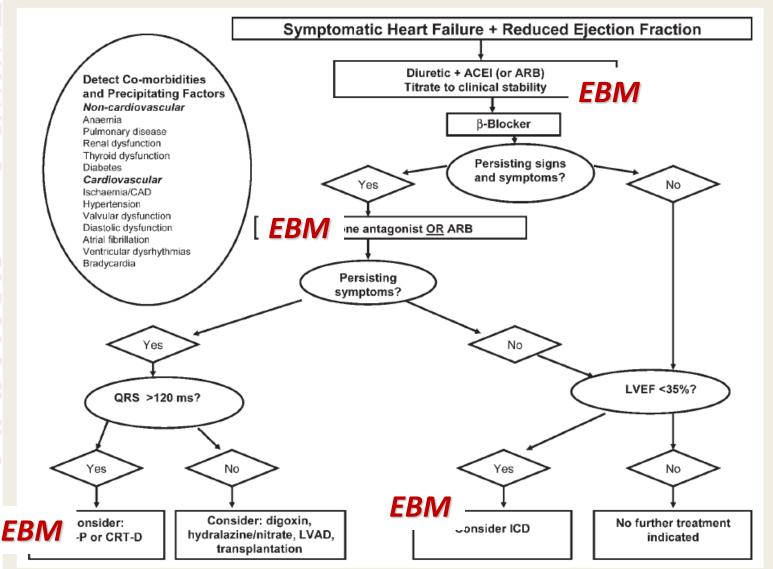



Figure 2 A treatment algorithm for patients with symptomatic heart failure and reduced ejection fraction.



## Potential Shortcomings of the EBM Approach

- Is the premise the same for all patients?
- Are the effects of treatment the same for all patients?
- Is the chance of a beneficial effect of therapy similar in all patients?
- Are there better options than to give everything to everybody?
- Is an individual approach better than standard therapy?



## Management of Heart Failure: a Major Challenge

- Frequent office visits along with constant evaluation most often needed to optimize care
- Great skill is required to recognise opportunities to titrate therapies (adherence to HF clinical practical guidelines inadequate)
- Few standard tools to add to standard management to assist in monitoring and manage HF patients



## Biomarkers and Unmet Needs in HF Management

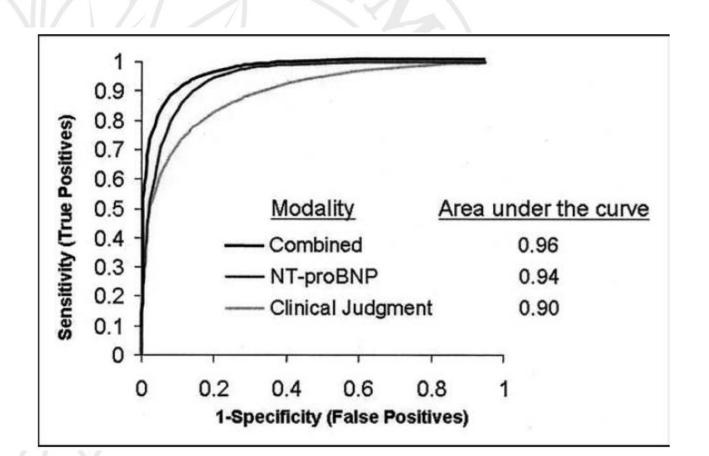
- Markers that tell us what to we should do (ie what is likely to work) or what we should not do (ie, what is unlikely to work) for an individual patients
- Markers that may lead to new therapeutic targets



#### Biomarkers in Heart Failure

| Biomarker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Suggested clinical applications                                                                                                                                                                                                                                                                                                                                                                                 | Biomarker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Suggested clinical applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Neurohormones Catecholamines Renin-angiotensin-aldosterone system (RAAS) Natriuretic peptides (ANP, BNP, NT-proBNP, MR-proANP and other related peptides) Arginine vasopressin and copeptin Endothelin Chromogranin A and B Adrenomedullin Myocyte injury Cardiac troponins (cTnI and cTnT)  Heart-type fatty acid binding protein (H-FABP) Myosin light-chain kinase I Fas (APO-1) Pentraxin (PTX)3 Inflammation C-reactive protein Cytokines and related receptors (IL-1, IL-2, IL-6, IL-8, IL-18, TNFa, | Prognosis Prognosis Diagnosis, prognosis, risk stratification, therapy monitoring Prognosis Prognosis Prognosis, therapeutic target Diagnosis Prognosis Diagnosis, prognosis, risk stratification Diagnosis, prognosis, risk stratification Prognosis Prognosis Prognosis Prognosis Prognosis, risk stratification Prognosis, risk stratification Prognosis, risk stratification Prognosis, risk stratification | Oxidative stress Oxidized low-density lipoproteins Myeloperoxidase (MPO) Urinary piopyrrins Urinary and plasma isoprostanes Plasma malondialdehyde Gamma-glutamyl transferases (GGT) Uric acid Matrix and cellular remodelling Matrix metalloproteinases (MMPs) and MPP tissue inhibitors (TIMPs) Collagen propeptides Propeptide procollagen type I and III Osteopontin (OPN) (and other matricellular proteins) Galectin-3 Endothelial dysfunction Adhesion molecules (ICAM, selectin-P) Endothelin Adiponectin  Homocysteine C-type natriuretic peptide (CNP) | Prognosis Prognosis, aid in elucidating the HF pathogenesis Prognosis, risk stratification Prognosis Prognosis, risk stratification Prognosis Prognosis, therapeutic target Prediction of HF incidence, prognosis, risk stratification Prediction of HF incidence Diagnosis, prognosis, aid in elucidating the HF pathogenesis |
| growth differentiation factor 15, ST2) PTX3 Adipokines (adiponectin, leptin, resistin, ghrelin) Procalcitonin Neopterin Osteoprotegerin                                                                                                                                                                                                                                                                                                                                                                    | Prognosis, risk stratification<br>Prediction of HF incidence,<br>prognosis, risk stratification<br>Prognosis<br>Prognosis<br>Prognosis, risk stratification                                                                                                                                                                                                                                                     | Other markers (organ failure, cachexia, co<br>Triiodothyronine<br>Cystatin C<br>Plasminogen activator inhibitor<br>(PAI)-1<br>Cholesterol<br>Urinary albumin-to-creatinine ratio<br>Haemoglobin<br>Creatinine, glomerular filtration rate                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |




## Main Criteria for a Biomarker to be Useful in Clinical Practice (EBLM)

1. Can the clinician easily measure the biomarker?

- 2. Does the biomarker add new information?
- 3. Will it help the clinician manage patients?



 Diagnosis: NPs levels accurately reflect the cause of dyspnea in patients presenting to the ED and add additional information beyond standard Hx, PE, and diagnostic testing







European Heart Journal (2008) **29**, 2388–2442 doi:10.1093/eurhearti/ehn309

**ESC GUIDELINES** 

#### ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008<sup>‡</sup>

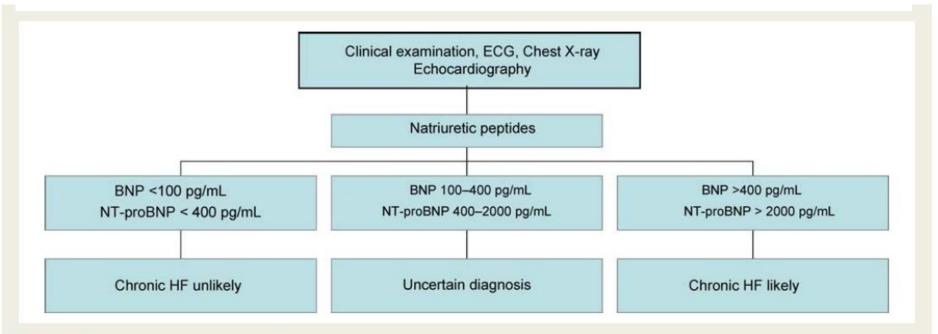
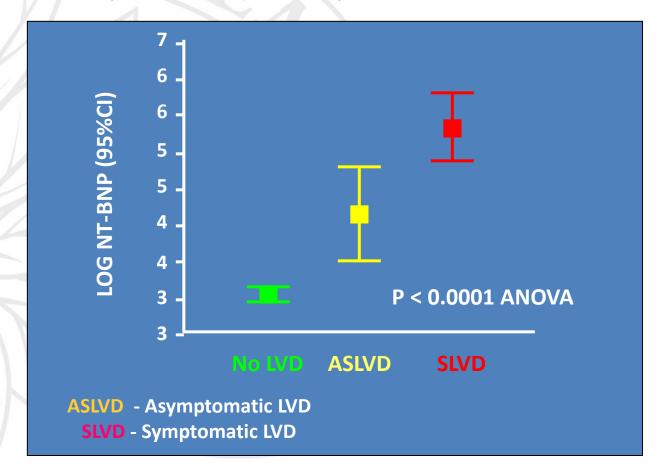
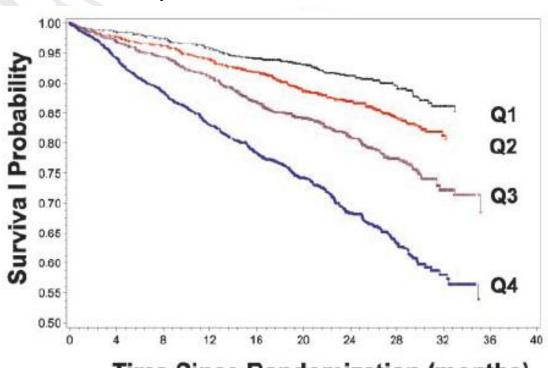




Figure I Flow chart for the diagnosis of HF with natriuretic peptides in untreated patients with symptoms suggestive of HF.




 Screening: NPs accurately detect abnormal left ventricular function in patients with or without Sx of CHF or a previous history of CHF



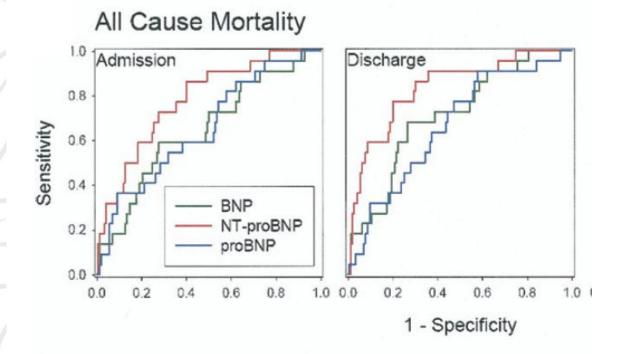


Risk Stratification: BNP levels are associated with risk of hospitalization and death in patients with CHF

4305 patients with stable, symptomatic HF LVEF < 40%
Baseline BNP:
181±230pg/mL
BNP re tested at 4 months



#### Time Since Randomization (months)


|             | Q1   | Q2       | Q3        | Q4    |
|-------------|------|----------|-----------|-------|
| BNP (pg/ml) | < 41 | 41- < 97 | 97- < 238 | ≥ 238 |
| % Mortality | 9.7  | 14.3     | 20.7      | 32.4  |

IS Anand et al , Circulation 2003; 107: 1278

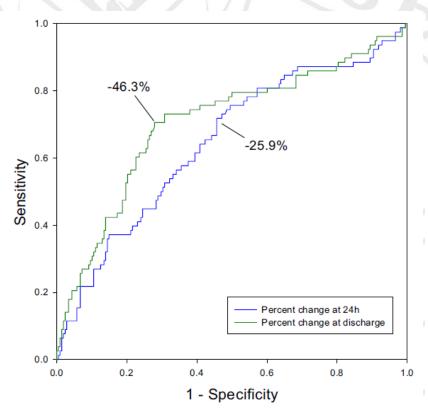


Risk Stratification: NPs levels are associated with risk of hospitalization and death in patients with ADHF

164 patients admitted because of acute decompensated HF



SW Waldo et al , JACC 2008; 51: 1874

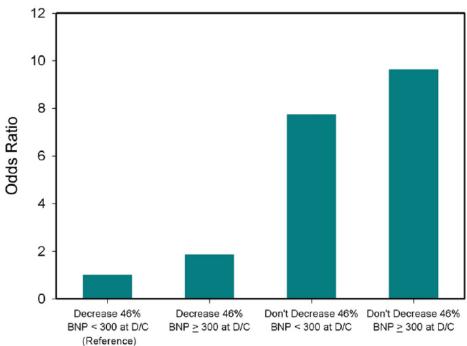

| AUC   | 95 % CI        | P                                      |
|-------|----------------|----------------------------------------|
| 0.644 | 0.519-0.769    | 0.030                                  |
| 0.778 | 0.679-0.876    | 0.000                                  |
| 0.653 | 0.532-0.774    | 0.021                                  |
|       | 0.644<br>0.778 | 0.644 0.519-0.769<br>0.778 0.679-0.876 |

| AUC   | 95 % CI     | P     |
|-------|-------------|-------|
| 0.709 | 0.598-0.820 | 0.002 |
| 0.834 | 0.743-0.924 | 0.000 |
| 0.666 | 0.550-0.782 | 0.012 |



### Prognostic Value of Serial Measurements of NPs

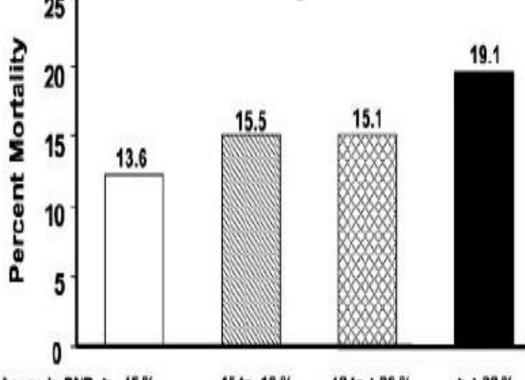
282 patients wuth ADHF BNP at admission, at 24 h, at discharge




#### THE ITALIAN RED STUDY

S Di Somma et al , Critical Care 2010; 14: R116

#### Probability of new cardiovascular events or rehospitalization

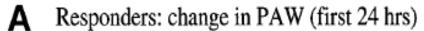

Odds Ratios of BNP % Change Subgroups

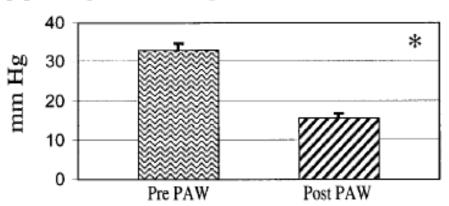




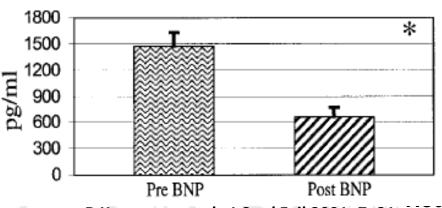
Prognostic Value of Serial Measurements of NPs

Val-HeFT Study Changes from Baseline to 4 Months



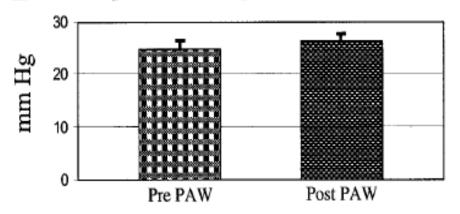


IS Anand et al , Circulation 2003; 107: 1278

| Quartile % change in BNF | >-45%  | - 45 to -13 % | - 13 to + 30 % | > + 30 % |
|--------------------------|--------|---------------|----------------|----------|
| Mean change in BNP       | -143   | -57           | +8             | + 118    |
| Mean BL BNP              | 214    | 193           | 157            | 122      |
| Mean % change in BNP     | - 66 % | -30 %         | +6 %           | +380 %   |
| Number of Patients       | 933    | 939           | 939            | 938      |

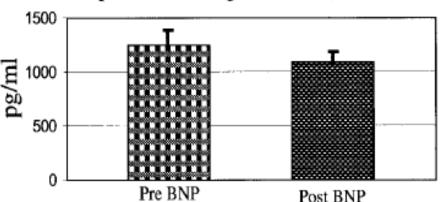



## Treatments Associated with a Reduction in BNP Levels






Responders: change in BNP (first 24 hrs)




R Kazanegra et al , J Card Fail 2001; 7: 21

**B** Non-responders: change in PAW (first 24 hrs)



Non-responders: change in BNP (first 24 hrs)



#### FONDAZIONE SALVATORE MAUGERI CUNICA DEL LAVORO E DELLA RIABILITAZIONE LR.C.C.S.

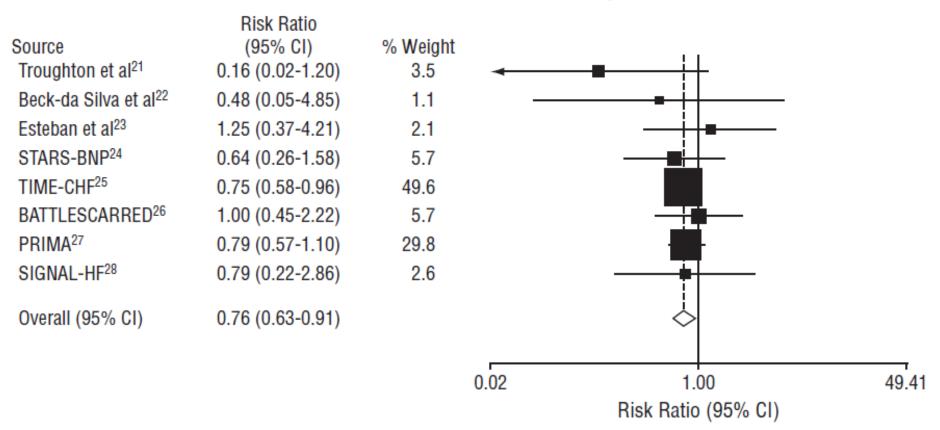
### Role of Natriuretic Peptides Assay

Treatment Guide: Natriuretic Peptides may guide initiation and titration of HF therapy

The concept of an intensified NPs guided therapy may be particularly attractive in: older pts who are less physically active, pts in whom symptoms are less reliable, pts who are more susceptible to druginduced side effects



### B-Type Natriuretic Peptide- Guided Heart Failure Therapy


Table 2. Treatment Group Targets in Included Trials

| Source                            | Target BNP/NT-Pro-BNP-Guided Therapy                                                                                                                                                                                                                                                                                | Target Control Group                                                                                    | Medical Adjustment Involved                                                                                               |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Troughton et al <sup>21</sup>     | NT-pro-BNP <1700 pg/mL                                                                                                                                                                                                                                                                                              | HF score <sup>a</sup> <2 (based on Framingham criteria)                                                 | ACEI, diuretic, digoxin, aldactone,<br>metolazone then additional<br>vasodilator (isosorbide dinitrate<br>and felodipine) |
| Beck-da-Silva et al <sup>22</sup> | Based first on BNP level and then clinical status evaluation; BB up-titrated when:  1. BNP level is lower + unchanged or better clinical status  2. There are mild signs of congestion but BNP level >10% lower than previous value  3. BNP is within ±10% previous level, clinical signs were primarily considered | Up-titrate medication when no sign of deterioration (worsening FC, HR <55, BP <80, increase congestion) | Only BB (ACEI or ARB and digoxin were unchanged)                                                                          |
| Esteban et al <sup>23</sup>       | NA                                                                                                                                                                                                                                                                                                                  | Framingham score                                                                                        | NA                                                                                                                        |
| STARS-BNP <sup>24</sup>           | BNP<100 pg/mL                                                                                                                                                                                                                                                                                                       | Based on PE + usual paraclinical + biological parameter                                                 | BB, ACEI, aldactone, diuretic                                                                                             |
| TIME-CHF <sup>25</sup>            | NT-pro-BNP + FC $\leq$ II $<$ 400 pg/mL ( $<$ 75 y), $<$ 800 pg/mL ( $\geq$ 75 y)                                                                                                                                                                                                                                   | FC ≤ II                                                                                                 | BB, ACEI, or ARB, aldactone,<br>diuretic, nitrate                                                                         |
| BATTLESCARRED <sup>26</sup>       | NT-pro-BNP <1300 pg/mL                                                                                                                                                                                                                                                                                              | HF score <sup>a</sup> <2                                                                                | BB, ACEI, aldactone, diuretic, digoxin, metolazone                                                                        |
| PRIMA <sup>27</sup>               | Individual NT-pro-BNP target (lowest level during the first 2 wk after treatment of HF) together with clinical assessment                                                                                                                                                                                           | Clinical assessment                                                                                     | BB, ACEI, or ARB, aldactone, diuretic, digoxin                                                                            |
| SIGNAL-HF <sup>28</sup>           | NT-pro-BNP plus clinical symptoms and signs                                                                                                                                                                                                                                                                         | Clinical symptoms and signs                                                                             | BB, ACEI, or ARB, aldactone                                                                                               |



## B-Type Natriuretic Peptide- Guided Heart Failure Therapy

#### **All Cause Mortality**

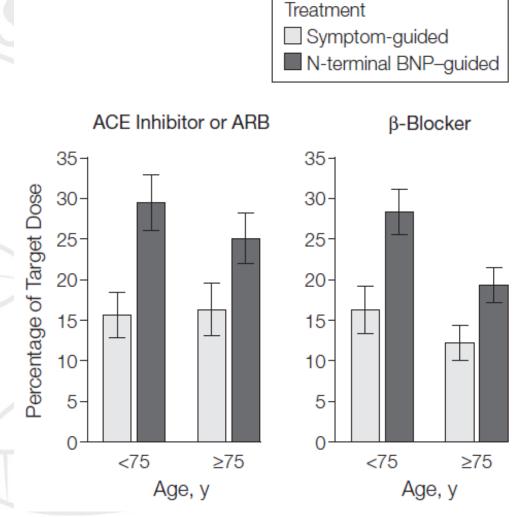




## B-Type Natriuretic Peptide- Guided Heart Failure Therapy

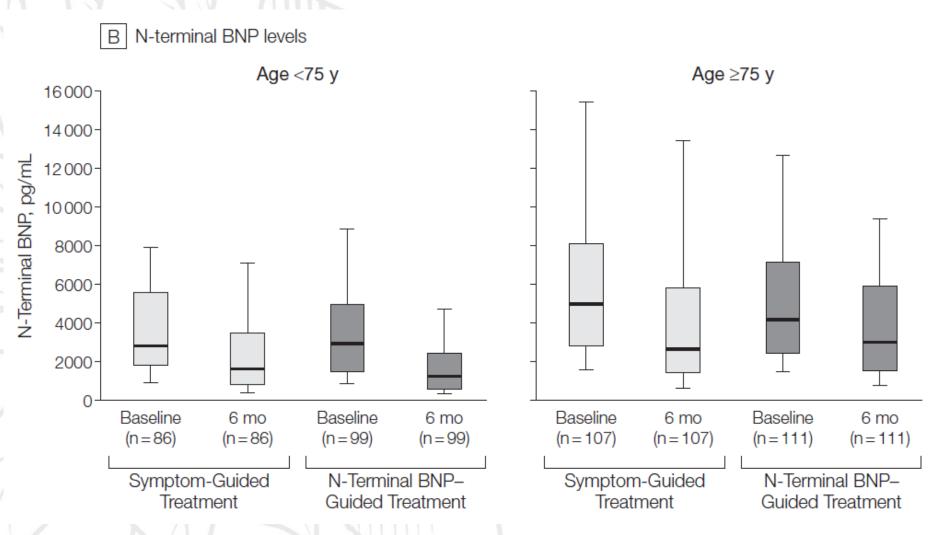
All Cause Hospitalization

| Source<br>Troughton et al <sup>21</sup><br>Beck-da Silva et al <sup>22</sup><br>STARS-BNP <sup>24</sup><br>Overall (95% CI) | Risk Ratio<br>(95% CI)<br>0.69 (0.31-1.58)<br>0.48 (0.10-2.32)<br>0.87 (0.67-1.12)<br>0.82 (0.64-1.05) | % Weight<br>14.1<br>5.5<br>80.4 | •    |                     |       |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|------|---------------------|-------|
|                                                                                                                             |                                                                                                        |                                 | 0.10 | 1.00                | 10.23 |
|                                                                                                                             |                                                                                                        |                                 |      | Risk Ratio (95% CI) |       |




#### BNP-Guided vs Symptoms-Guided Heart Failure Therapy (TIME-CHF)

#### 499 outpatients


- Age: 60 or older
- LVEF < 45%
- NYHA II or greater
- prior hospitalization for HF within 1 year
- -NT-proBNP 2 or more times the upper limit of normal

PRIMARY OUTCOME: 18-month survival free of all-cause hospitalization



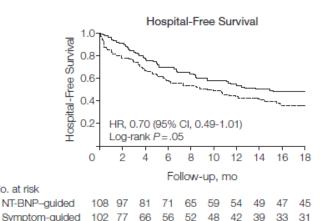
M Pfisterer et al , JAMA 2009; 301: 383

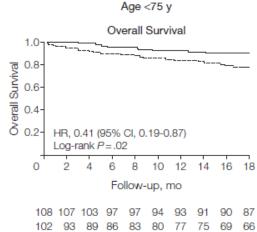
## BNP-Guided vs Symptoms-Guided Section BNP-Guided vs Symptoms-Guided Heart Failure Therapy (TIME-CHF)

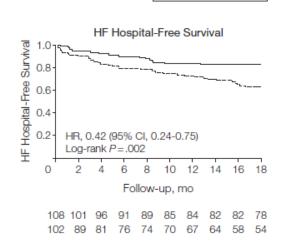


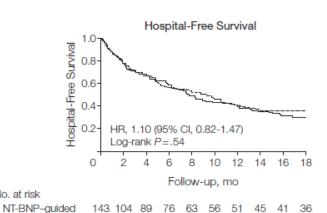
M Pfisterer et al , JAMA 2009; 301: 383




No. at risk

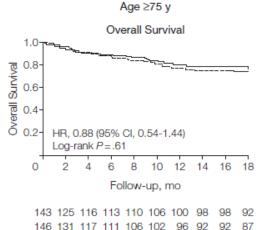

No. at risk

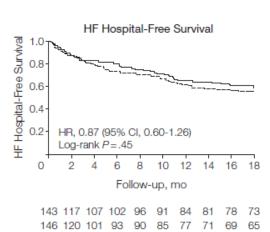

Symptom-guided


#### BNP-Guided vs Symptoms-Guided Heart Failure Therapy (TIME-CHF)

NT-BNP-guided Symptom-guided





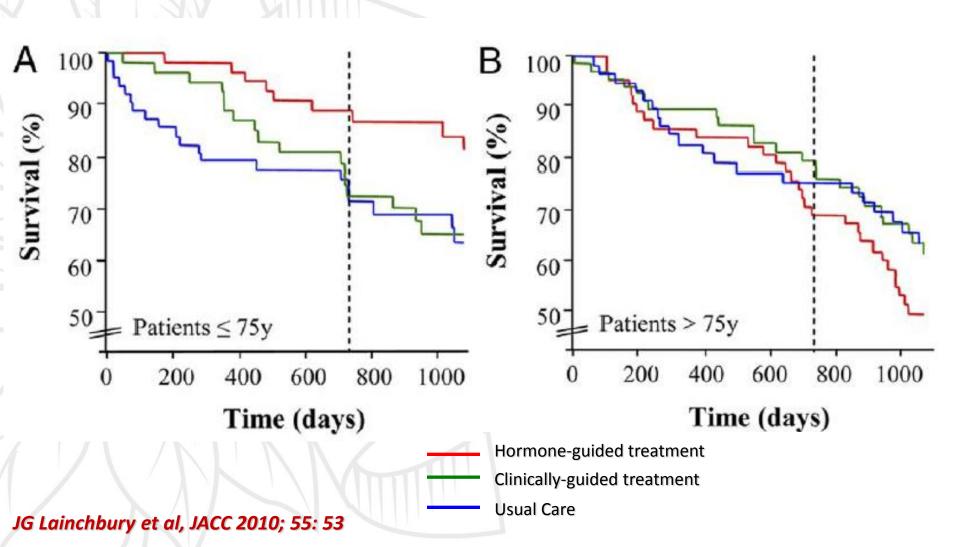






73 68

60 52






M Pfisterer et al , JAMA 2009; 301: 383

146 107 86

#### FONDAZIONE SALVATORE MAUGI CUNICA DEL LAVORO E DELLA RIABILITAZIO 1.R.C.C.S.

## NT-proBNP-Guided Treatment for CHF (BATTLESCARRED Trial)



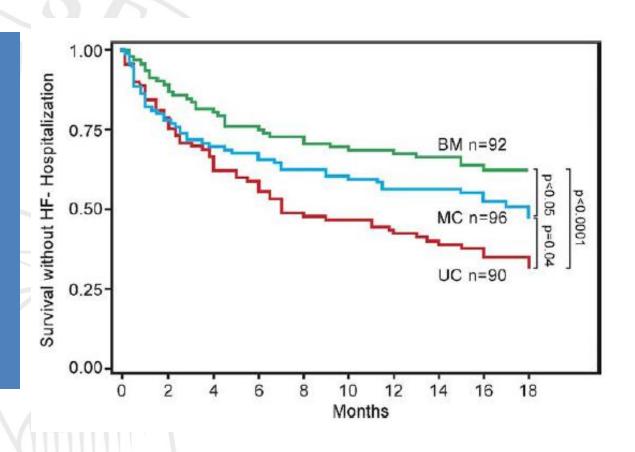


#### NT-proBNP-Guided Intensive Patient Management in Addition to Multidisciplinary Care in CHF

#### 278 patients

- hospitalized for HF
- NYHA III/IV at admission
- -LVEF < 40%

Randomly allocated to:


- Usual Care
- Multidisciplinary Care
- BNP guided management

Follow-up: 1 year

**PRIMARY OUTCOMES:** 

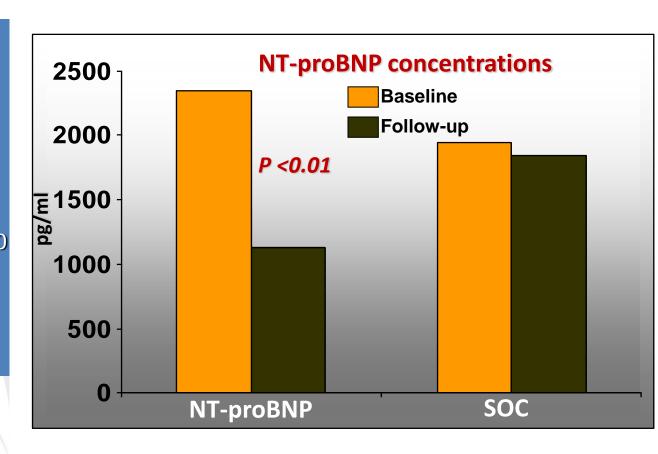
HF hospitalization

Death + HF hospitalization



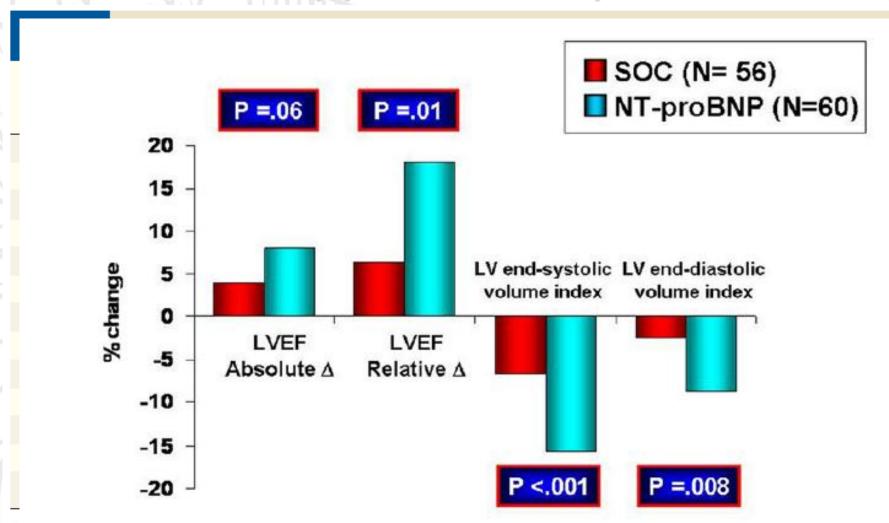


# Use of NT-proBNP Testing to Guide Heart Failure Therapy in the Outpatient Setting PROTECT


#### 151 patients

- HF due to LV systolic dysfunction
- $-63\pm14 \text{ yrs } (22\% \ge 75 \text{ yrs})$

Randomly allocated to:


- Standard Care
- Standard Care + a goal to reduce NT-proBNP to < 1000 pg/ml

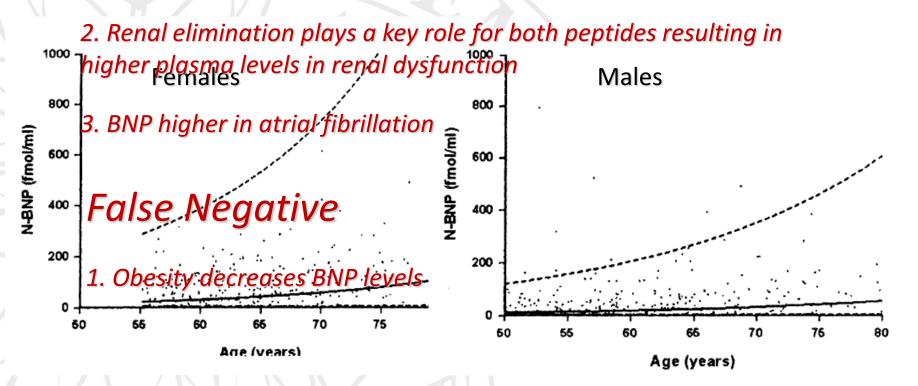
PRIMARY OUTCOME:
Total cardiovascular events



#### FONDAZIONE SALVATORE MAUGERI CLINICA DEL LAVORO E DELLA RIABILITAZIONE LR. C.C.S.

## Use of NT-proBNP Testing to Guide Heart Failure Therapy in the Outpatient Setting




JL Jannuzzi et al, JACC 2011; 58: 1881



## BNP - NTproBNP Caveats

#### False Positive

1. Age and gender relationship



Median and 95% CI in relation to age and gender

I Loke et al, Eur J Heart Fail 2003; 5: 599



### Conclusions

- Natriuretic peptides are an effective clinical tool in the management of heart failure
- Besides their well –established diagnostic and prognostic utility, NPs guided therapy is possible, safe, and beneficial
- However, they should always be used as a tool together with clinical experience