XXIV GIORNATE CARDIOLOGICHE TORINESI

### ADVANCES IN CARDIAC ARRHYTHMIAS

### and GREAT INNOVATIONS IN CARDIOLOGY

#### Directors

Fiorenzo Gaita Sebastiano Marra

#### **Scientific Commitee**

Malcolm Bell, *Usa* Martin Borggrefe, *Germany* Amir Lerman, *Usa* Jean Francois Leclercq, *France* Dipen Shah, *Suisse* 

#### Organization Commitee

Carlo Budano, *Italy* Davide Castagno, *Italy* Monica Andriani, *Italy* 

#### Turin October 25-27, 2012 Centro Congressi Unione Industriale



Università degli Studi di Torino





Atrial fibrillation: new pathophysiological concepts and novel pharmacological approaches:

Update on rate control strategies which are the real targets?

Federico Lombardi, MD, FESC Cardiologia Osp. San Paolo Dip. Scienze della Salute Università degli Studi di Milano



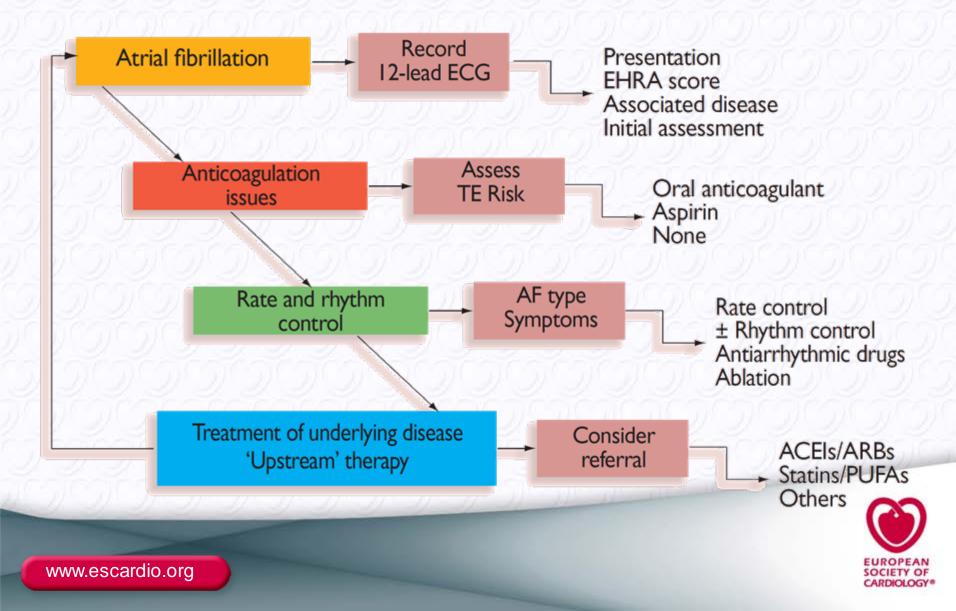
European Heart Journal doi:10.1093/eurheartj/ehq278

### **ESC GUIDELINES**

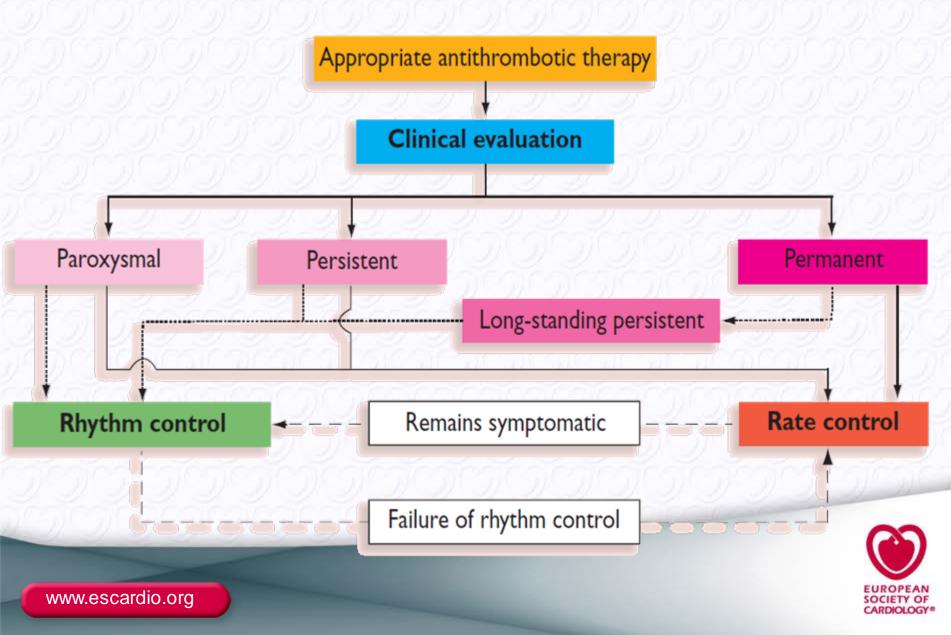
# Guidelines for the management of atrial fibrillation

The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC)

Developed with the special contribution of the European Heart Rhythm Association (EHRA)<sup>†</sup>


Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS)

Published today - Advanced Access European Heart Journal


http://eurheartj.oxfordjournals.org/

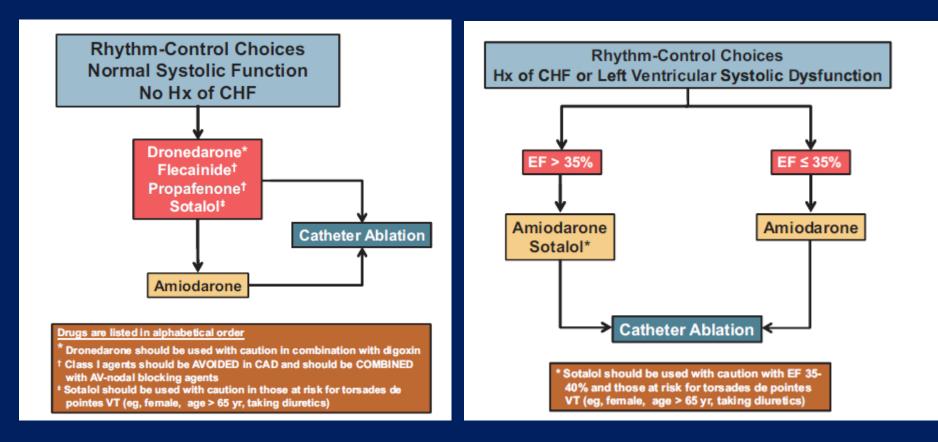


# **Principles of Management**



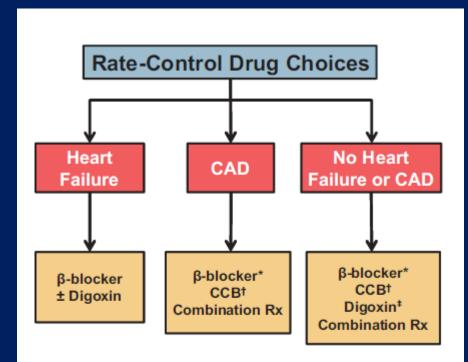
## **Rate and Rhythm Control**




## **Principles of Antiarrhythmic Drug Therapy to Maintain Sinus Rhythm**

- 1. Treatment is motivated by attempts to reduce AF-related symptoms
- 2. Efficacy of antiarrhythmic drugs to maintain sinus rhythm is <u>modest</u>
- 3. Clinically successful antiarrhythmic drug therapy <u>may reduce</u> <u>rather than eliminate recurrence of AF</u>
- 4. If one antiarrhythmic drug 'fails' a clinically acceptable response may be achieved with another agent
- 5. Drug-induced proarrhythmia or extra-cardiac side-effects are frequent
- 6. <u>Safety rather than efficacy considerations should primarily guide</u> the choice of antiarrhythmic agent




### Society Guidelines

### Focused 2012 Update of the Canadian Cardiovascular Society Atrial Fibrillation Guidelines: Recommendations for Stroke Prevention and Rate/Rhythm Control



Society Guidelines

### Focused 2012 Update of the Canadian Cardiovascular Society Atrial Fibrillation Guidelines: Recommendations for Stroke Prevention and Rate/Rhythm Control

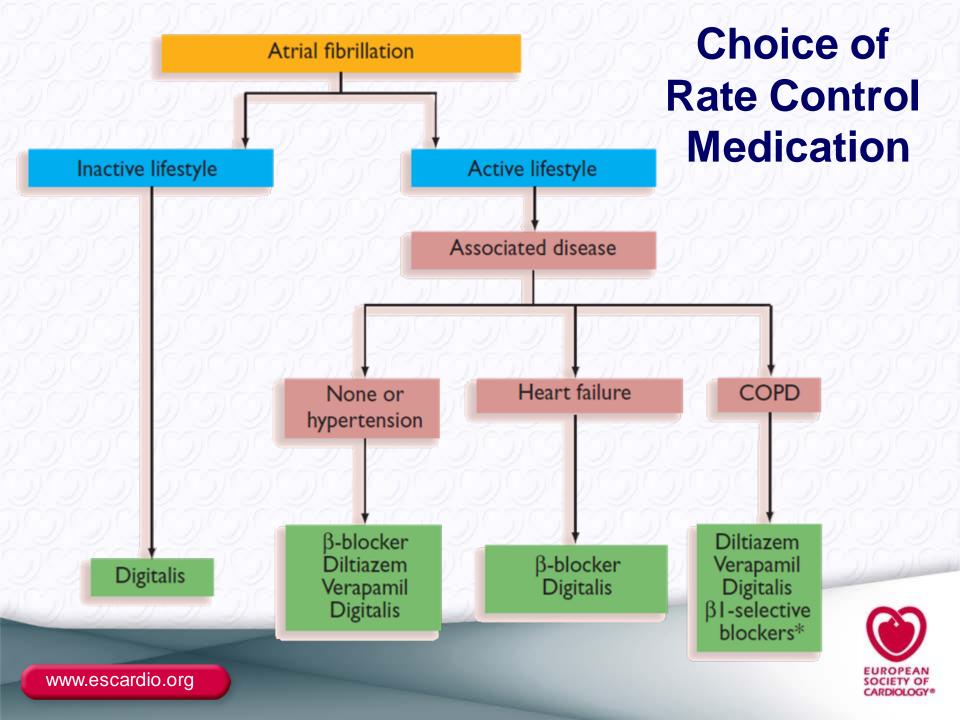


#### Drugs are listed in alphabetical order

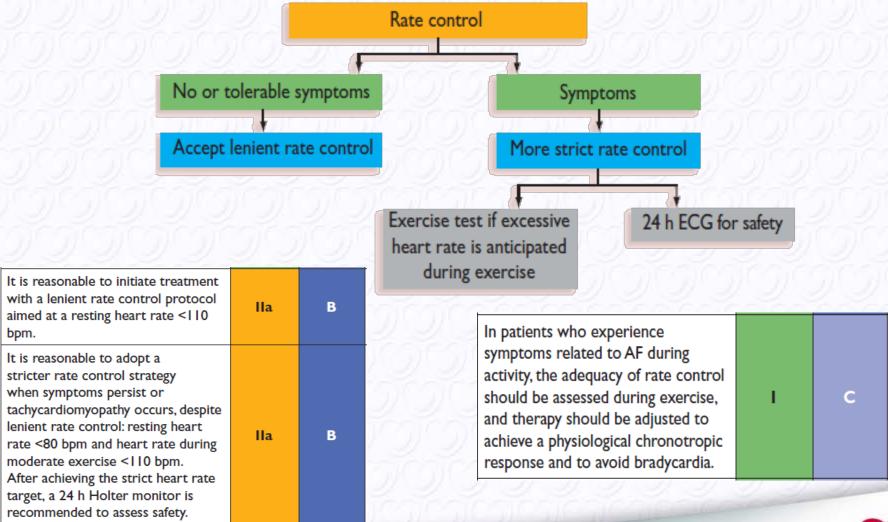
- \*β-blockers preferred in CAD
- <sup>†</sup> Non-dihydropyridine calcium channel blockers (diltiazem, verapamil)
- \* Digoxin may be considered as monotherapy only in particularly sedentary individuals

| Trial              | Ref | Patients<br>(n) | Mean<br>age     | Mean<br>follow-up | Inclusion criteria                                                                                                                                                                                   | Primary outcome<br>parameter                                                                                                                                                                 | Patients reaching primary<br>outcome (n) |                     |       |
|--------------------|-----|-----------------|-----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|-------|
|                    |     |                 | (years) (years) |                   |                                                                                                                                                                                                      |                                                                                                                                                                                              | Rate<br>control                          | Rhythm<br>control   | P     |
| PIAF (2000)        | 92  | 252             | 61.0            | 1.0               | Persistent AF<br>(7-360 days)                                                                                                                                                                        | Symptomatic improvement                                                                                                                                                                      | 76/125<br>(60.8%)                        | 70/127<br>(55.1%)   | 0.32  |
| AFFIRM (2002)      | 86  | 4060            | 69.7            | 3.5               | Paroxysmal AF or<br>persistent AF, age<br>≥65 years, or risk of<br>stroke or death                                                                                                                   | All-cause mortality                                                                                                                                                                          | 310/2027<br>(25.9%)                      | 356/2033<br>(26.7%) | 0.08  |
| RACE (2002)        | 87  | 522             | 68.0            | 2.3               | Persistent AF or flutter<br>for <1 years and<br>1-2 cardioversions<br>over 2 years and oral<br>anticoagulation                                                                                       | Composite: cardiovascular<br>death, CHF, severe bleeding,<br>pacemaker implantation,<br>thrombo-embolic events,<br>severe adverse effects of<br>antiarrhythmic drugs                         | 44/256<br>(17.2%)                        | 60/266<br>(22.6%)   | 0.11  |
| STAF (2003)        | 88  | 200             | 66.0            | 1.6               | Persistent AF<br>(>4 weeks and<br><2 years), LA size<br>>45 mm, CHF NYHA<br>II-IV, LVEF <45%                                                                                                         | Composite: overall<br>mortality, cerebrovascular<br>complications, CPR, embolic<br>events                                                                                                    | 10/100<br>(10.0%)                        | 9/100<br>(9.0%)     | 0.99  |
| HOT CAFÉ (2004)    | 89  | 205             | 60.8            | 1.7               | First clinically overt<br>persistent AF (≥7 days<br>and <2 years),<br>age 50–75 years                                                                                                                | Composite: death,<br>thrombo-embolic events;<br>intracranial/major<br>haemorrhage                                                                                                            | 1/101<br>(1.0%)                          | 4/104<br>(3.9%)     | >0.71 |
| AF-CHF (2008)      | 90  | 1376            | 66              | 3.1               | LVEF ≤35%, symptoms<br>of CHF, history of AF<br>(≥6 h or<br>DCC <last 6="" months)<="" td=""><td>Cardiovascular death</td><td>175/1376<br/>(25%)</td><td>182/1376<br/>(27%)</td><td>0.59</td></last> | Cardiovascular death                                                                                                                                                                         | 175/1376<br>(25%)                        | 182/1376<br>(27%)   | 0.59  |
| J-RHYTHM<br>(2009) | 91  | 823             | 64.7            | 1.6               | Paroxysmal AF                                                                                                                                                                                        | Composite of total<br>mortality, symptomatic<br>cerebral infarction,<br>systemic embolism, major<br>bleeding, hospitalization for<br>heart failure, or physical/<br>psychological disability | 89/405<br>(22.0%)                        | 64/418<br>(15.3%)   | 0.012 |

#### Table 13 General characteristics of rhythm control and rate control trials in patients with AF<sup>86-92</sup>


AF = atrial fibrillation; AFRIRM = Atrial Fibrillation Follow-up Investigation of Rhythm Management; CHF = congestive heart failure; CPR = cardiopulmonary resuscitation; DCC = direct current cardioversion; HOT CAFÉ = How to Treat Chronic Atrial Fibrillation; J-RHYTHM = Japanese Rhythm Management Trial for Atrial Fibrillation; LVEF = left ventricular ejection fraction; NYHA = New York Heart Association; PIAF = Pharmacological Intervention in Atrial Fibrillation; RACE = RAte Control versus Electrical cardioversion for persistent atrial fibrillation; STAF = Strategies of Treatment of Atrial Fibrillation.

#### Table 14 Comparison of adverse outcomes in rhythm control and rate control trials in patients with AF

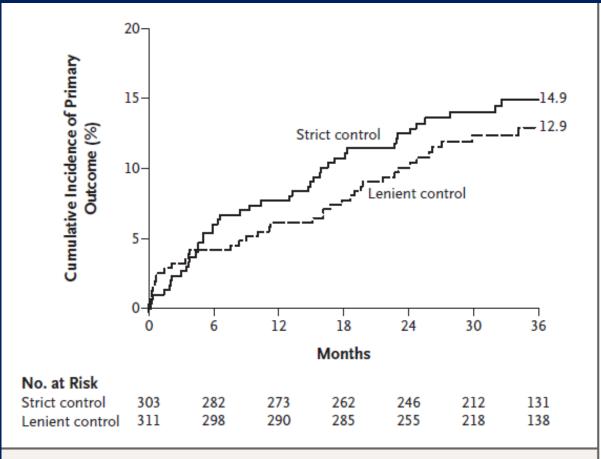

| Trial           | Ref | Deaths from<br>all causes<br>(in rate/rhythm) | Deaths from<br>cardiovascular causes | Deaths from non-<br>cardiovascular causes | Stroke | Thrombo-embolic<br>events | Bleeding |
|-----------------|-----|-----------------------------------------------|--------------------------------------|-------------------------------------------|--------|---------------------------|----------|
| PIAF (2000)     | 92  | 4                                             | 1/1                                  | la                                        | ND     | ND                        | ND       |
| AFFIRM (2002)   | 86  | 666 (310/356)                                 | 167/164                              | 113/165                                   | 77/80  | ND                        | 107/96   |
| RACE (2002)     | 87  | 36                                            | 18/18                                | ND                                        | ND     | 14/21                     | 12/9     |
| STAF (2003)     | 88  | 12 (8/4)                                      | 8/3                                  | 0/1                                       | 1/5    | ND                        | 8/11     |
| HOT CAFÉ (2004) | 89  | <mark>4 (</mark> 1/3)                         | 0/2                                  | 1/1                                       | 0/3    | ND                        | 5/8      |
| AF-CHF (2008)   | 90  | 228/217                                       | 175/182                              | 53/35                                     | 11/9   | ND                        | ND       |

<sup>a</sup>Total number of patients not reported.

AF = atrial fibrillation; AFFIRM = Atrial Fibrillation Follow-up Investigation of Rhythm Management; HOT CAFÉ = HOw to Treat Chronic Atrial Fibrillation; ND = not determined; PIAF = Pharmacological Intervention in Atrial Fibrillation; RACE = RAte Control versus Electrical cardioversion for persistent atrial fibrillation; STAF = Strategies of Treatment of Atrial Fibrillation.



## **Optimal Rate Control**






### Lenient versus Strict Rate Control in Patients with Atrial Fibrillation

Van Gelder et al, NEJM 2010

| Characteristic                                           | Lenient Rate Control<br>(N=311) | Strict Rate Control<br>(N=303) | Total Population<br>(N=614) |
|----------------------------------------------------------|---------------------------------|--------------------------------|-----------------------------|
| Rate-control medications in use — no. (%)                |                                 |                                |                             |
| None                                                     | 36 (11.6)                       | 27 (8.9)                       | 63 (10.3)                   |
| Beta-blocker alone                                       | → 140 (45.0)                    | 136 (44.9)                     | 276 (45.0)                  |
| Verapamil or diltiazem alone                             | 18 (5.8)                        | 19 (6.3)                       | 37 (6.0)                    |
| Digoxin alone                                            | 20 (6.4)                        | 24 (7.9)                       | 44 (7.2)                    |
| Beta-blocker and either verapamil or diltiazem           | 7 (2.3)                         | 11 (3.6)                       | 18 (2.9)                    |
| Beta-blocker and digoxin                                 | 53 (17.0)                       | 49 (16.2)                      | 102 (16.6)                  |
| Digoxin and either verapamil or diltiazem                | 14 (4.5)                        | 14 (4.6)                       | 28 (4.6)                    |
| Beta-blocker, digoxin, and either verapamil or diltiazem | 2 (0.6)                         | 5 (1.7)                        | 7 (1.1)                     |
| Sotalol                                                  | 18 (5.8)                        | 13 (4.3)                       | 31 (5.0)                    |
| Amiodarone                                               | 3 (1.0)                         | 5 (1.7)                        | 8 (1.3)                     |
| Echocardiographic variables                              |                                 |                                |                             |
| Left atrial size, long axis — mm                         | 46±6                            | 46±7                           | 46±7                        |
| Left ventricular end-diastolic diameter — mm             | 51±7                            | 51±8                           | 51±7                        |
| Left ventricular end-systolic diameter — mm              | 36±8                            | 36±9                           | 36±8                        |
| Left ventricular ejection fraction — %                   | 52±11                           | 52±12                          | 52±12                       |
| Left ventricular ejection fraction ≤40% — no. (%)        | 45 (14.5)                       | 48 (15.8)                      | 93 (15.1)                   |



### Figure 2. Kaplan–Meier Estimates of the Cumulative Incidence of the Primary Outcome, According to Treatment Group.

The numbers at the end of the Kaplan-Meier curves are the estimated cumulative incidence of the primary outcome at 3 years.

### Van Gelder et al, NEJM 2010

 Table 3. Cumulative Incidence of the Composite Primary Outcome and Its Components during the 3-Year Follow-up

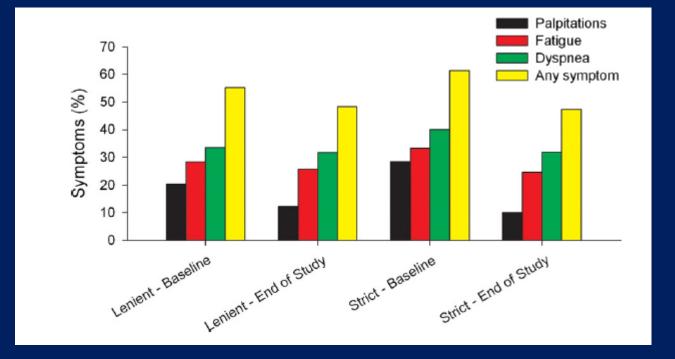
 Period, According to Treatment Group.\*

| Outcome                                                       | Lenient Rate Control<br>(N=311) | Strict Rate Control<br>(N = 303) | Hazard Ratio<br>(90% CI) |
|---------------------------------------------------------------|---------------------------------|----------------------------------|--------------------------|
|                                                               | no. of pati                     | (20/0 20)                        |                          |
| Composite primary outcome                                     | 38 (12.9)                       | 43 (14.9)                        | 0.84 (0.58–1.21)         |
| Individual components                                         |                                 |                                  |                          |
| Death from cardiovascular cause                               | 9 (2.9)                         | 11 (3.9)                         | 0.79 (0.38–1.65)         |
| From cardiac arrhythmia                                       | 3 (1.0)                         | 4 (1.4)                          |                          |
| From cardiac cause other than arrhythmia                      | 1 (0.3)                         | 2 (0.8)                          |                          |
| From noncardiac vascular cause                                | 5 (1.7)                         | 5 (1.9)                          |                          |
| Heart failure                                                 | 11 (3.8)                        | 11 (4.1)                         | 0.97 (0.48–1.96)         |
| Stroke                                                        | 4 (1.6)                         | 11 (3.9)                         | 0.35 (0.13-0.92)         |
| Ischemic                                                      | 3 (1.3)                         | 8 (2.9)                          |                          |
| Hemorrhagic                                                   | 1 (0.3)                         | 4 (1.5)                          |                          |
| Systemic embolism                                             | 1 (0.3)                         | 0                                |                          |
| Bleeding                                                      | 15 (5.3)                        | 13 (4.5)                         | 1.12 (0.60–2.08)         |
| Intracranial                                                  | 0                               | 3 (1.0)                          |                          |
| Extracranial                                                  | 15 (5.3)                        | 10 (3.5)                         |                          |
| Syncope                                                       | 3 (1.0)                         | 3 (1.0)                          |                          |
| Life-threatening adverse effect of rate-control drugs         | 3 (1.1)                         | 2 (0.7)                          |                          |
| Sustained ventricular tachycardia or ventricular fibrillation | 0                               | 1 (0.3)                          |                          |
| Cardioverter-defibrillator implantation                       | 0                               | 1 (0.3)                          |                          |
| Pacemaker implantation                                        | 2 (0.8)                         | 4 (1.4)                          |                          |

### Van Gelder et al, NEJM 2010

### **Effect of Lenient Versus Strict Rate Control on Cardiac Remodeling in Patients With Atrial Fibrillation**

Data of the RACE II (RAte Control Efficacy in permanent atrial fibrillation II) Study


#### Clinical Factors Associated With Changes in Echocardiographic Parameters

| Change in LV end-diastolic diameter, mm |                     |         |                     |         |
|-----------------------------------------|---------------------|---------|---------------------|---------|
| Lenient rate control                    | 1.1 (-0.8 to 3.0)   | 0.24    | 1.0 (-0.8 to 2.8)   | 0.27    |
| Age                                     | 0.1 (0 to 0.2)      | 0.03    |                     |         |
| Female                                  | 5.8 (3.9 to 7.6)    | <0.0001 | 6.5 (4.6 to 8.4)    | <0.0001 |
| Duration of any AF                      | 0 (-0.1 to 0)       | 0.82    |                     |         |
| Valvular heart disease                  | -1.9 (-4.2 to 0.4)  | 0.10    | -3.8 (-6.0 to -1.5) | 0.001   |
| Previous heart failure hospitalization  | -4.7 (-7.8 to -1.6) | 0.003   | -3.9 (-6.9 to -0.8) | 0.01    |
| Body mass index, kg/m <sup>2</sup>      | -0.3 (-0.5 to -0.1) | 0.007   | -0.3 (-0.5 to -0.1) | 0.004   |
| QRS duration, 5 ms                      | -0.4 (-0.7 to -0.2) | 0.001   |                     |         |
| Creatinine, 10 µmol/l                   | -0.3 (-0.8 to 0.1)  | 0.10    |                     |         |
| Verapamil/diltiazem                     | 1.6 (-0.5 to 3.8)   | 0.13    |                     |         |
| Digoxin                                 | -1.6 (-3.4 to 0.3)  | 0.10    |                     |         |
| RAAS inhibitor                          | -3.3 (-5.2 to -1.5) | <0.0001 | -2.8 (-4.6 to -0.9) | 0.003   |
| Change in heart rate                    | 0 (0 to 0)          | 0.80    |                     |         |

Smit et al, JACC 2011

### The Effect of Rate Control on Quality of Life in Patients With Permanent Atrial Fibrillation

Data From the RACE II (Rate Control Efficacy in Permanent Atrial Fibrillation II) Study

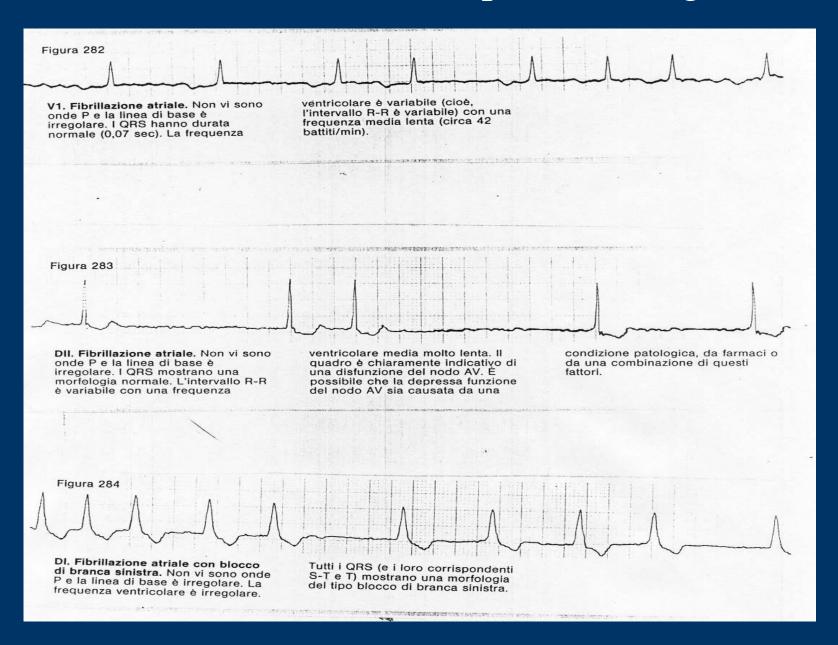


Groenveld et al, JACC 2011

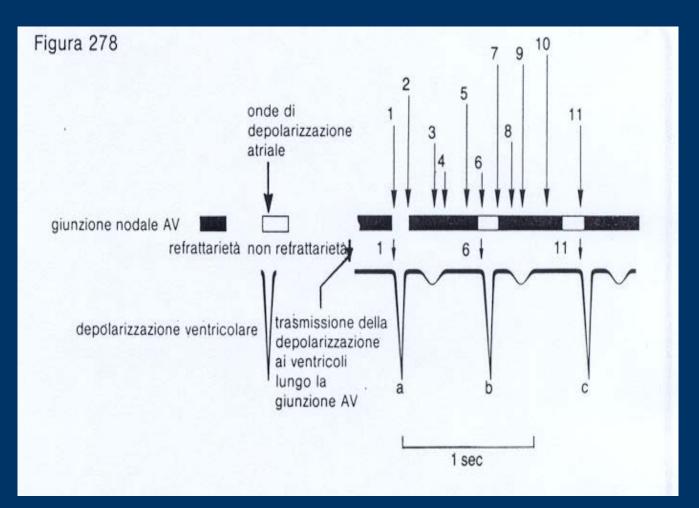
2012 EHRA/HRS expert consensus statement on cardiac resynchronization therapy in heart failure: implant and follow-up recommendations and management

# 6.2. The cardiac resynchronization therapy patient with atrial fibrillation

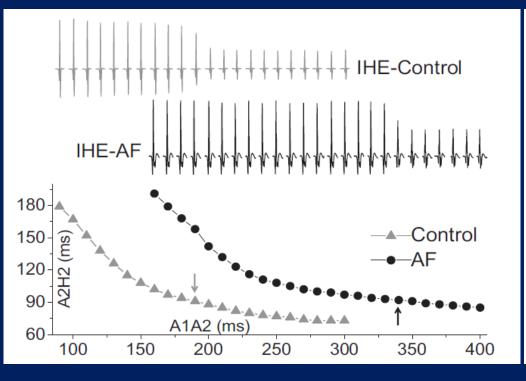
In patients with atrial fibrillation, it is imperative to ensure a high rate of biventricular pacing for the patient to extract maximum benefit from CRT. Unlike in NSR, in atrial fibrillation patients this task may be challenging. **Relying on the per cent biventricular pacing data stored in the CRT device may be misleading** as these rates would include fusion and pseudo-fusion between pacing from the device and conduction through the patient's intrinsic conduction system. This is one of the reasons implicated in the improved outcomes of CRT patients with atrial fibrillation with AV nodal ablation compared to rate control with medications. <sup>238</sup> Other mechanisms implicated in the improved outcomes after AV ablation include more complete rate control and regularization without the need for medications that may induce fatigue and tiredness and exacerbate other symptoms of heart failure.<sup>329</sup>


Heart Rhythm 2012

Recommendation for atrioventricular node ablation in AF patients


| Recommendations                                                                                                                                                                                                                                                                                                                                                           | Class <sup>a</sup> | Level <sup>b</sup> | Ref. <sup>c</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------|
| Ablation of the AV node to control<br>heart rate should be considered<br>when the rate cannot be controlled<br>with pharmacological agents and<br>when AF cannot be prevented<br>by antiarrhythmic therapy or is<br>associated with intolerable side<br>effects, and direct catheter-based<br>or surgical ablation of AF is not<br>indicated, has failed, or is rejected. | lla                | B                  | 106,107           |
| Ablation of the AV node should<br>be considered for patients with<br>permanent AF and an indication<br>for CRT (NYHA functional class III<br>or ambulatory class IV symptoms<br>despite optimal medical therapy,<br>LVEF ≤35%, QRS width ≥130 ms).                                                                                                                        | lla                | В                  | 105,<br>108–110   |
| Ablation of the AV node should<br>be considered for CRT non-<br>responders in whom AF prevents<br>effective biventricular stimulation<br>and amiodarone is ineffective or<br>contraindicated.                                                                                                                                                                             | lla                | с                  |                   |
| In patients with any type of AF and<br>severely depressed LV function<br>(LVEF <u>&lt;35%</u> ) and severe heart<br>failure symptoms (NYHA III or IV),<br>biventricular stimulation should be<br>considered after AV node ablation.                                                                                                                                       | lla                | с                  |                   |

| Ablation of the AV node to control<br>heart rate may be considered<br>when tachycardia-mediated<br>cardiomyopathy is suspected and the<br>rate cannot be controlled with<br>pharmacological agents, and direct<br>ablation of AF is not indicated, has<br>failed, or is rejected.                                                      | IIb | U |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|--|
| Ablation of the AV node with<br>consecutive implantation of a<br>CRT device may be considered<br>in patients with permanent AF,<br>LVEF <35%, and NYHA functional<br>class I or II symptoms on optimal<br>medical therapy to control heart<br>rate when pharmacological therapy<br>is insufficient or associated with<br>side effects. | IIb | c |  |
| Catheter ablation of the AV node<br>should not be attempted without a<br>prior trial of medication, or catheter<br>ablation for AF, to control the AF<br>and/or ventricular rate in patients<br>with AF.                                                                                                                               | Ш   | C |  |


### Different ventricular response during AF



The AV node is subjected to the impact of atrial impulses during AF which leads to summation and/or cancellation of wave-fronts in AV node and, accordingly, a high level of disorganization of the penetrating impulses. Different properties such as intrinsic refractoriness of the AV node and concealed conduction determine the characteristics of the ventricular response. The existence of two pathways through the AV node, each with different electrophysiological properties, also affect ventricular response.



# Atrioventricular node functional remodeling induced by atrial fibrillation



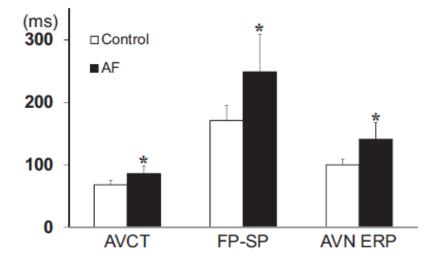



Figure 3 Basic atrioventricular node (AVN) conduction time (AVCT), the prematurities at which a transition from fast-pathway (FP) to slow-pathway (SP) conduction occurred (FP-SP), and AVN effective refractory period (AVN ERP) in the control and atrial fibrillation (AF) rabbit groups. \*P < .01.

### Zhang & Mazgalev, Heart Rhythm 2012

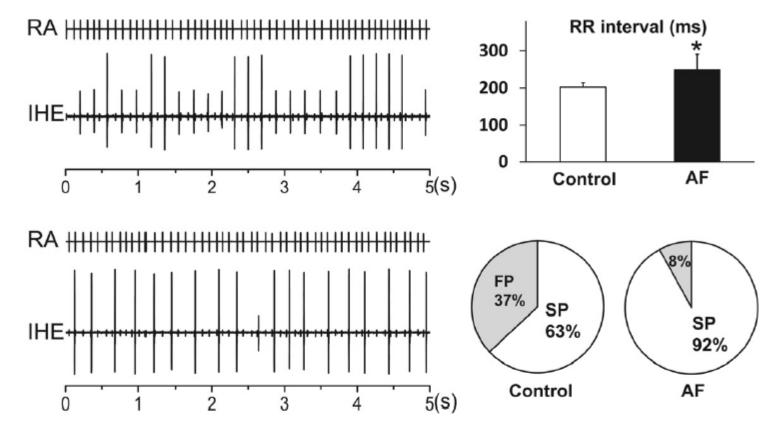
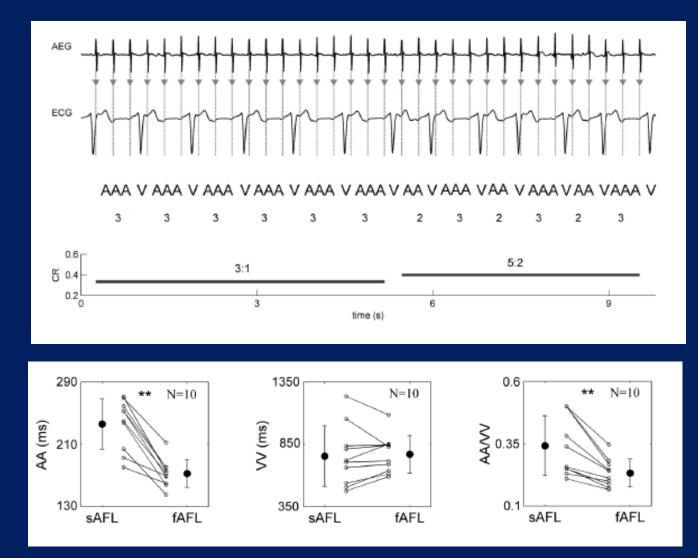
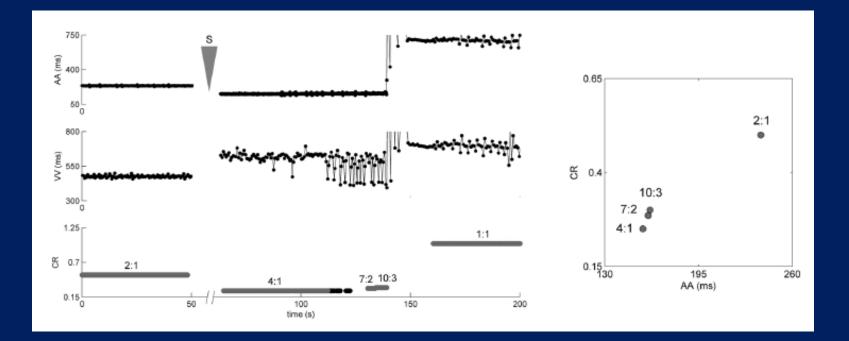




Figure 4 The left panel shows the original traces recorded during atrial fibrillation (AF) from a control (upper) and an AF rabbit preparation (bottom). Note the shorter HH intervals and frequent low-amplitude inferior His electrograms (IHE) in the control preparation. The right bar graph shows the longer average HH intervals during AF in the AF group than in the control group. The pie chart shows the percentage of beats conducted by the fast pathway (FP) and the slow pathway (SP) during AF in the 2 groups. RA = right atrium. \*P < .01.


### Zhang & Mazgalev, Heart Rhythm 2012

Nodal recovery, dual pathway physiology and concealed conduction determine complex AV dynamics in human atrial tachyarrhythmias



### Masè et al, Am J Physiol 2012

# Transitions between AV coupling patterns at changing atrial cycle length



Masè et al, Am J Physiol 2012

### Atrioventricular Nodal Function during Atrial Fibrillation: Model Building and Robust Estimation

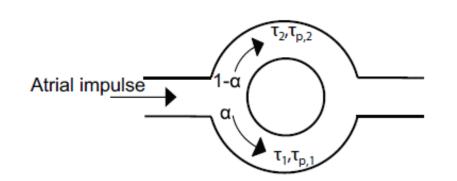



Figure 1: Modeling of the AV node in the proposed model. An atrial impulse arriving to the AV node passes through the slow pathway with a level of probability  $\alpha$  and is characterized by the refractory period  $\tau_1$ , whereas the corresponding parameters of the fast pathway are  $(1 - \alpha)$  and  $\tau_2$ . The refractory periods  $\tau_1$  and  $\tau_2$  can be prolonged by, at most,  $\tau_{p,1}$  and  $\tau_{p,2}$ , respectively.

### Corino et al, Biomed Sign Proc & Control in press

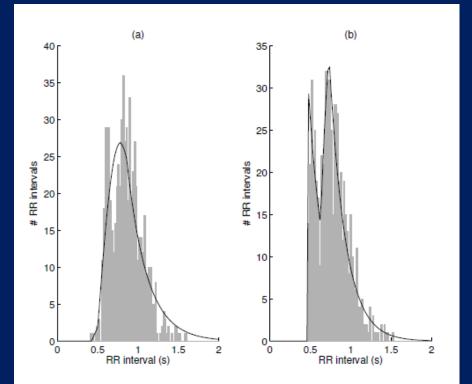



Figure 7: Histogram of transformed RR intervals and the estimated model PDF from the same patient using (a) the original and (b) the new AV node model.

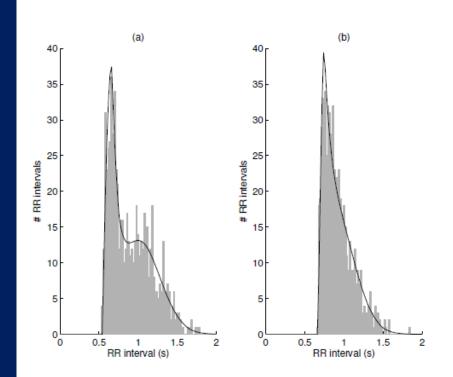
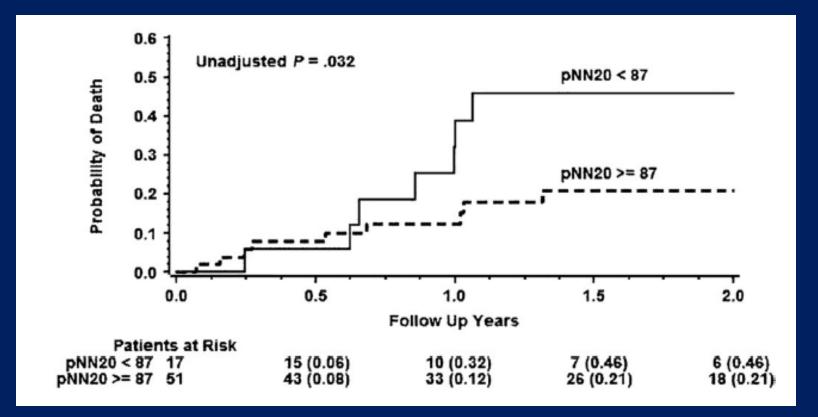




Figure 8: Histogram of transformed RR intervals and the estimated model PDF from the same patient during (a) rest and (b) tilt phase.

### Corino et al, Biomed Sign Proc & Control in press

Atrial fibrillatory rate and irregularity of ventricular response as predictors of clinical outcome in patients with atrial fibrillation

MADIT II population; at multivariate Cox analysis, pNN20 was associated with HR 3.03; 95% CI 1.21-7.11; p= 0.018



Platonov & Holmqvist, J Electrocardiol 2011

## **Conclusions:**

Control of ventricular response can be obtained in most patients with atrial fibrillation and is associated with symptoms' reduction.

Available evidence suggests that the efficacy of a lenient control strategy is not inferior to the strict one.

- At variance with rhythm control, available drugs are safe and effective for rate control.
- Control of ventricular response in CRT patients is still a critical issue, which needs to be properly addressed to reduce the number of non responders.
- A compete understanding of AV physiology in AF patients is still missing and is now object of investigation of several bio-medical groups.