CRT Response: Inadequate and unpredictable

Daubert, J.C., et al. Europace, 2012

CRT Challenge

43% of CRT patients classified as negative or nonresponders after 6 months

Ypenburg, C., et al. Journal of the American College of Cardiology 2009

Survival Effect of CRT of Super-Responders, Responders, an Non-Responders

Rickard et al. Heart Rhythm 2014

CRT Response Current Issues

Multiple different factors between individual pts can affect response:

Genetic & gender differences Stage &

CHF etiology

LV lead location

QRS morphology & width

Presence of co-morbidities, LV scar, & AF/PVC's

Coronary sinus valves/stenosis/limited target vessels Device

management: AV & VV optimization, ensuring BiV pacing

Identificare le Cause del problema per cercare una soluzione

RITARDO AV NON OTTIMIZZATO

- POSIZIONE NON OTTIMALE DEL LEAD VSX
- STIMOLAZIONE BIVENTRICOLARE< 90%
- PERSISTENZA DELLA DISSINCRONIA MECCANICA

Definition of success in CRT recipients

Table 1. Seventeen Different Response Criteria IdentifiedFrom the 26 Relevant Publications	Clinical 9. \downarrow NYHA $\geq 1^{2,12-14}$
Response criteriaEchocardiographic1. ↑ LVEF ≥5% (absolute) ^{1,2} 2. ↑ LVEF ≥15% ^{3,4} 3. ↓ LVESV ≥10% and did not die of progressive HF within 6 months ^{20,27} 4. ↓ LVESV >15% ^{2,5-10} 5. LVESV <115% of baseline ²⁶ 6. ↓ LVESVI >15% ²⁵ 7. ↓ LVEDV >15% ² 8. ↑ Stroke volume ≥15% ^{4,21,22}	 10. ↓ NYHA ≥1 and did not die of progressive HF within 6 months^{2,5} 11. ↓ NYHA ≥1 and ↑ 6MWD ≥25%¹⁵ 12. ↓ NYHA ≥1 and ↑ 6MWD ≥25% and did not die of progressive HF within 6 months^{16,17} 13. ↑ 6MWD >10%, no heart transplant, did not die of progressive HF within 6 months¹¹ 14. (↓ NYHA ≥1 or ↑ VO₂max >10% or ↑ 6MWD >10%) and alive, no hospitalization for decompensated HF²⁴ 15. Two of 3:⁵ ↓ NYHA ≥1 ↑ 6MWD ≥50 m ↓ QOL ≥15 16. Clinical composite score improved¹⁰
Combined 17. (\uparrow LVEF \geq 5% [abs \downarrow QOL \geq 10) ¹⁸	olute] or \uparrow 6MWD \geq 30 m) and (\downarrow NYHA \geq 1 or

	Response	No. Evaluable
Response Criteria	Rate, %	(% of Total)
Echocardiographic	\bigcirc	
↑ LVEF >5 units	51	286 (67)
↑ LVEF >15% (relative)	54	286 (67)
\downarrow LVESV \geq 10%, no HF death	62	291 (68)
\downarrow LVESV $>$ 15%	56	286 (67)
LVESV <115% of baseline	91	286 (67)
\downarrow LVEDV $>$ 15%	49	286 (67)
↑ Stroke volume ≥15%	34	286 (67)
Clinical		
\downarrow NYHA \geq 1	71	385 (90)
\downarrow NYHA \geq 1, no HF death	70	390 (92)
\downarrow NYHA \geq 1 and \uparrow 6MWD \geq 25%	33	348 (82)
\downarrow NYHA ≥ 1 and \uparrow 6MWD $\geq 25\%,$ no HF	32	353 (83)
death		
\uparrow 6MWD ≥10%, no HF death, no transplant	61	353 (83)
Two of the following 3: \downarrow NYHA \geq 1, \uparrow 6MWD \geq 50 m, \downarrow QOL \geq 15	63	339 (80)
Clinical composite score improved	69	426 (100)
Combined	\setminus	
↑ LVEF >5 units or ↑6MWD ≥50 m and ↓NYHA ≥1 or ↓QOL ≥10	71	250 (59)
· · · · · · · · · · · · · · · · · · ·	$- \bigvee -$	

 Table 4.
 Response Rates for the Different Criteria

A prospective comparison of echocardiography and device algorithms for atrioventricular and interventricular interval optimization in cardiac resynchronization therapy

Ravindu Kamdar, Evelyn Frain, Fiona Warburton, Laura Richmond, Victoria Mullan, Thomas Berriman, Glyn Thomas, Joanna Tenkorang, Mehul Dhinoja, Mark Earley, Simon Sporton, and Richard Schilling*

Aims	Echocardiographic optimization of atrioventricular (AV) and interventricular (VV) intervals in cardiac resynchroniza- tion therapy (CRT) is costly, time-consuming, and requires skill and expertise so is usually undertaken only in 'non- responder' patients. An algorithm in St Jude Medical CRT devices (QuickOpt TM) claims to optimize these settings automatically. The aim of this study was to compare the two optimization techniques.
Methods and results	Optimization of AV and VV intervals was performed a month after CRT device implantation in 26 patients with heart failure, first by echocardiography then by QuickOpt. The left ventricular outflow tract (LVOT) velocity-time integral (VTI) was measured after optimization by each method. Agreement between the optimization methods was assessed by the Bland-Altman analysis and correlation by Pearson's correlation coefficient. There was good correlation between the LVOT VTI following optimization by both methods ($R^2 = 0.77$, $P < 0.001$). However, agreement between the two methods was poor, with 15 of 26 and 10 of 26 patients having a >20 ms difference in the optimal AV and VV interval values, respectively. Left ventricular outflow tract VTI was significantly better (22 of 26 patients; $P < 0.001$) in patients optimized by echocardiography than by QuickOpt.
Conclusion	There is a poor agreement in optimal AV and VV intervals determined by echocardiography and QuickOpt, with echocardiographic optimization giving a superior haemodynamic outcome.

FREEDOM trial (Frequent Optimization Study Using the QuickOpt Method)

St. Jude Medical

Average LVOT VTI following optimization by echocardiography and QuickOpt (cm)

Primary Results From the SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy (SMART-AV) Trial

A Randomized Trial Comparing Empirical, Echocardiography-Guided, and Algorithmic Atrioventricular Delay Programming in Cardiac Resynchronization Therapy

- *Background*—One variable that may influence cardiac resynchronization therapy response is the programmed atrioventricular (AV) delay. The SmartDelay Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac Resynchronization Therapy (SMART-AV) Trial prospectively randomized patients to a fixed empirical AV delay (120 milliseconds), echocardiographically optimized AV delay, or AV delay optimized with SmartDelay, an electrogram-based algorithm.
- *Methods and Results*—A total of 1014 patients (68% men; mean age, 66 ± 11 years; mean left ventricular ejection fraction, $25\pm7\%$) who met enrollment criteria received a cardiac resynchronization therapy defibrillator, and 980 patients were randomized in a 1:1:1 ratio. All patients were programmed (DDD-60 or DDDR-60) and evaluated after implantation and 3 and 6 months later. The primary end point was left ventricular end-systolic volume. Secondary end points included New York Heart Association class, quality-of-life score, 6-minute walk distance, left ventricular end-diastolic volume, and left ventricular ejection fraction. The medians (quartiles 1 and 3) for change in left ventricular end-systolic volume at 6 months for the SmartDelay, echocardiography, and fixed arms were -21 mL (-45 and 6 mL), -19 mL (-45 and 6 mL), respectively. No difference in improvement in left ventricular end-systolic volume at 6 months was observed between the SmartDelay and echocardiography arms (P=0.52) or the SmartDelay and fixed arms (P=0.66). Secondary end points, including structural (left ventricular end-diastolic volume and left ventricular eigection fraction) and functional (6-minute walk, quality of life, and New York Heart Association classification) measures, were not significantly different between arms.
- *Conclusions*—Neither SmartDelay nor echocardiography was superior to a fixed AV delay of 120 milliseconds. The routine use of AV optimization techniques assessed in this trial is not warranted. However, these data do not exclude possible utility in selected patients who do not respond to cardiac resynchronization therapy.

NYHA Improvement (% of patients) 100 % of Patients 80 60 40 20 0 No Change No Change No Change Worsened Improved Worsened Improved Worsened Improved Smart Delay Echo Fixed

Ellenbogen KA et al. Circulation. 2010;122:2660-2668

Investigation of a novel algorithm for synchronized leftventricular pacing and ambulatory optimization of cardiac resynchronization therapy: Results of the adaptive CRT trial

David O. Martin, MD, MPH,* Bernd Lemke, MD,[†] David Birnie, MD, MB, ChB,[‡] Henry Krum, MBBS, PhD,[§] Kathy Lai-Fun Lee, MD,[∥] Kazutaka Aonuma, MD, PhD,[¶] Maurizio Gasparini, MD,[#] Randall C. Starling, MD, MPH,* Goran Milasinovic, MD,** Tyson Rogers, MS,^{††} Alex Sambelashvili, PhD,^{††} John Gorcsan III, MD,^{§§} Mahmoud Houmsse, MD, FHRS,^{‡‡} Adaptive CRT Study Investigators

BACKGROUND In patients with sinus rhythm and normal atrioventricular conduction, pacing only the left ventricle with appropriate atrioventricular delays can result in superior left ventricular and right ventricular function compared with standard biventricular (BiV) pacing.

OBJECTIVE To evaluate a novel adaptive cardiac resynchronization therapy ((aCRT) algorithm for CRT pacing that provides automatic ambulatory selection between synchronized left ventricular or BiV pacing with dynamic optimization of atrioventricular and interventricular delays.

	aCRT (aCRT (n = 318)		n = 160)			
	n	Mean \pm SD	n	Mean \pm SD	Difference (95% CI)	P* (margin)	
LVESVi (mL/m²)							
Baseline	291	71.7 ± 28.3	140	74.0 ± 30.9			
6-mo postrandomization	268	63.5 ± 31.9	137	64.7 ± 32.7			
Paired difference at 6 mo	250	\sim 8.3 \pm 23.3	123	\sim 10.5 \pm 24.2	2.3 \sim (2.8 to 7.4)	<.0001 (15)	
LVEF (%)						· · /	
Baseline	291	29.6 ± 9.2	140	30.3 ± 8.4			
6-mo postrandomization	268	33.6 ± 10.4	137	32.9 ± 10.1			
Paired difference at 6 mo	250	3.9 ± 10.0	123	2.9 ± 9.8	1.0 \sim (1.2 to 3.1)	0.0009 ~(2.5)	
NYHA						、 <i>、</i>	
Baseline	318	3.0 ± 0.2	160	3.0 ± 0.3			
6-mo postrandomization	296	2.0 ± 0.8	153	2.2 ± 0.8			
Paired difference at 6 mo	296	\sim 1.0 \pm 0.8	153	\sim 0.8 \pm 0.8	\sim 0.15 (0.3 to 0.0)	<.0001 (0.3)	
6-min walk distance (m)						· · ·	
Baseline	312	276.8 ± 127.5	156	277.7 ± 137.8			
6-mo postrandomization	288	325.5 ± 130.4	146	311.4 ± 152.0			
Paired difference at 6 mo	284	42.4 ± 103.3	142	29.0 ± 123.0	13.4 \sim (8.9 to 35.7)	0.0002 ~(30)	
MLWHF QOL							
Baseline	286	48.5 ± 24.1	142	46.3 ± 23.6			
6-mo postrandomization	263	$\textbf{28.2} \pm \textbf{22.0}$	139	$\textbf{28.4} \pm \textbf{23.0}$			
Paired difference at 6 mo	261	\sim 19.3 \pm 20.7	135	\sim 17.6 \pm 23.8	\sim 1.7 \sim (6.3 to 2.8)	0.002 (5.1)	

□ aCRT (n=318) □ Echo (n=160)

METHODS Patients (n = 522) indicated for a CRT-defibrillator were randomized to aCRT vs echo-optimized BiV pacing (Echo) in a 2:1 ratio and followed at 1-, 3-, and 6-month postrandomization.

RESULTS The study met all 3 noninferiority primary objectives: (1) the percentage of aCRT patients who improved in their clinical composite score at 6 months was at least as high in the aCRT arm as in the Echo arm (73.6% vs 72.5%, with a noninferiority margin of 12%; P = .0007); (2) aCRT and echo-optimized settings resulted in similar cardiac performance, as demonstrated by a high concordance correlation coefficient between aortic velocity time integrals at aCRT and Echo settings at randomization (concordance correlation coefficient = 0.93; 95% confidence interval 0.91-0.94) and at 6-month postrandomization (concordance correlation coefficient = 0.90; 95% confidence interval 0.87-0.92); and (3) aCRT did not result in inappropriate device settings. There were no significant differences between the arms with respect to heart failure events or ventricular arrhythmia episodes. Secondary end points showed similar benefit, and right-ventricular pacing was reduced by 44% in the aCRT arm.

CONCLUSIONS The aCRT algorithm is safe and at least as effective as BiV pacing with comprehensive echocardiographic optimization.

Martin DO et al. Heart Rhythm 2012;9:1807-1814

Contractility sensor-guided optimization of cardiac resynchronization therapy: results from the RESPOND-CRT trial

Josep Brugada¹*, Peter Paul Delnoy², Johannes Brachmann³, Dwight Reynolds⁴, Luigi Padeletti⁵, Georg Noelker⁶, Charan Kantipudi⁷, José Manuel Rubin Lopez⁸, Wolfgang Dichtl⁹, Alberto Borri-Brunetto¹⁰, Luc Verhees¹¹, Philippe Ritter¹², and Jagmeet P. Singh¹³, for the RESPOND CRT Investigators[†]

Aims Although cardiac resynchronization therapy (CRT) is effective in patients with systolic heart failure (HF) and a wide QRS interval, a substantial proportion of patients remain non-responsive. The SonR contractility sensor embedded in the right atrial lead enables individualized automatic optimization of the atrioventricular (AV) and interventricular (VV) timings. The RESPOND-CRT study investigated the safety and efficacy of the contractility sensor system in HF patients undergoing CRT.

Methods
and resultsRESPOND-CRT was a prospective, randomized, double-blinded, multicentre, non-inferiority trial. Patients were
randomized (2:1, respectively) to receive weekly, automatic CRT optimization with SonR vs. an Echo-guided opti-
mization of AV and VV timings. The primary efficacy endpoint was the rate of clinical responders (patients alive,
without adjudicated HF-related events, with improvement in New York Heart Association class or quality of life),
at 12 months. The study randomized 998 patients. Responder rates were 75.0% in the SonR arm and 70.4% in the
Echo arm (mean difference, 4.6%; 95% Cl, -1.4% to 10.6%; P < 0.001 for non-inferiority margin -10.0%) (Table 2).
At an overall mean follow-up of 548 ± 190 days SonR was associated with a 35% risk reduction in HF hospitaliza-
tion (hazard ratio, 0.65; 95% Cl, 0.46–0.92; log-rank P = 0.01).

Conclusion Automatic AV and VV optimization using the contractility sensor was safe and as effective as Echo-guided AV and VV optimization in increasing response to CRT.

A randomized pilot study of optimization of cardiac resynchronization therapy in sinus rhythm patients using a peak endocardial acceleration sensor vs. standard methods

Philippe Ritter^{1*}, Peter Paul HM Delnoy², Luigi Padeletti³, Maurizio Lunati⁴, Herbert Naegele⁵, Alberto Borri-Brunetto⁶, and Jorge Silvestre⁷

Outcome Clinical responders ^a NYHA improved Stable NYHA, improved quality of life Clinical non-responders ^b Clinically stable Clinically worsened: secondary endpoint	SonR (N=649)	Echo (N=318)	Mean % difference	P-value		
	% (n)		(95% CI)	Non-inferiority	Superiority	
Clinical responders ^a	75.0 (487)	70.4 (224)	4.6 (-1.4, 10.6)	<0.001	0.13	
NYHA improved	65.6 (426)	61.9 (197)				
Stable NYHA, improved quality of life	9.4 (61)	8.5 (27)				
Clinical non-responders ^b	25.0 (162)	29.6 (94)				
Clinically stable	4.0 (26)	4.4 (14)				
Clinically worsened: secondary endpoint	21.0 (136)	25.2 (80)	4.2 (-1.5, 9.9)	<0.001	0.15	
Death from any cause	5.5 (36)	6.0 (19)				
If no death, HF-related event	10.2 (66)	12.9 (41)				
Worsened NYHA class	0.9 (6)	0.3 (1)				
Worsened quality of life; stable NYHA stable	4.3 (28)	6.0 (19)				
Death or HF hospitalization	14.2 (92)	17.6 (56)	3.4 (-1.5, 8.4)	<0.001	0.18	

Brugada J et al. Eur Heart J 2017;38:730-738

LV Pacing and Location: <u>Anatomical</u> <u>Specific</u> LV Lead placement

LBBB

Conventional: LV Site of electrical & mechanical delay = lateral and PL wall Target Lateral or PL branch of the CS

Issues

30-40% Non-responder rate

8-10% of eligible pts do not receive CRT due to anatomical constraints

Issue: QRS Duration & LBBB

12 lead surface QRS duration limited information

Reflection of total duration of ventricular activation but not a reliable marker of LV activation

Significant variations of LV activation with typical LBBB can be be seen

Important factor to determine CRT response and lead location position at implant

Varma N et al. Card Electrophysiolo Clin 2015.

LV Lead Position: Hemodynamics

Distribution of Best (A) and Worst (B) Sites

- Stimulation from the best LV endocardial site resulted in a 2x \dP/dt
- Site was widely distributed

Conclusion - Practice of fixed single site in lateral wall will not capture hemodynamically best site- this requires individualization

Derval JACC 2010

LV Pacing and Location: <u>Patient Specific</u> LV Lead placement

Need to "personalize" LV final site How to determine "best" LV site

Site of latest electrical activation Guided by QLV, Electrical mapping

Site of latest mechanical activation

Guided by hemodynamic data

Guided by imaging (ICE/3 D Echo/Tissue speckle tracking, MRI, CT scan, SPECT Nuclear)

How to arrive at "best" LV site

Transvenous vs Epicardial vs Endocardial

LV Pacing and Location

Non-apical LV lead location better than apical

Target the site of maximal electrical delay: QLV >95 ms, Body surface mapping

Target the site of maximal mechanical delay: Tissue speckle tracking (TARGET Trial), Cardiac MRI, SPECT (Guide-CRT)

Quadripolar LV leads better than bipolar leads

Multisite (MPP) LV lead pacing maybe better than single site

LV endocardial pacing maybe better than epicardial pacing

Imaging

Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchronization Therapy

The TARGET Study: A Randomized, Controlled Trial

Fakhar Z. Khan, MA,* Mumohan S. Virdee, MD,* Christopher R. Palmer, PHD,† Peter J. Pugh, MD,‡ Denis O'Halloran, BCH,‡ Maros Elsik, PHD,* Philip A. Read, MD,* David Begley, MD,* Simon P. Fynn, MD,* David P. Dutka, DM‡

Cambridge, United Kingdom

Conclusions Compared with standard CRT treatment, the use of speckle-tracking echocardiography to the target LV lead placement yields significantly improved response and clinical status and lower rates of combined death and heart failure-related hospitalization. (Targeted Left Ventricular Lead Placement to Guide Cardiac Resynchroniza-tion Therapy [TARGET] study); ISRCTN19717943) (J Am Coll Cardiol 2012;59:1509–18) © 2012 by the

Cause Mortality

₹

Influence of Pacing Site Characteristics on Response to Cardiac Resynchronization Therapy

Jorge A. Wong, MD; Raymond Yee, MD; John Stirrat, BMSc; David Scholl, BSc; Andrew D. Krahn, MD; Lorne J. Gula, MD, MSc; Allan C. Skanes, MD; Peter Leong-Sit, MD; George J. Klein, MD; David McCarty, MB BCh; Nowell Fine, MD; Aashish Goela, MD; Ali Islam, MD; Terry Thompson, PhD; Maria Drangova, PhD; James A. White, MD

A

Circ Cardiovasc Imaging. 2013;6:542-550.

Evaluated scar (RV/LV) distribution in 60 CRT pts using LGE-MRI/cardiacCT scan

Assessed CRT response at 6M by echo (reduction of LVESV >15%)

Significant scar 13% LV pacing regions 37% RV pacing regions Ischemic

Non-ischemic

Non-Apical LV Lead Location Better

Apical placement may enhance lead stability but is associated with worse outcomes (MADIT-CRT)^{1,2}

Distal LV lead placement: 1.64 increased risk ofdeath or HF hospitalization & a 2.6 increased risk of mortality

Singh, J.P. et al. Circulation 2011 Mar 22;123(11):1159-66.
 Merchant, F.M. et al. Heart Rhythm 2010;7:639 – 644

Positioning of Left Ventricular Pacing Lead Guided by Intracardiac Echocardiography with Vector Velocity Imaging During Cardiac Resynchronization Therapy Procedure

RONG BAI, M.D.,*, || LUIGI DI BIASE, M.D., PH.D.,*, ¶,†† PRASANT MOHANTY, M.B.B.S., M.P.H.,* AARON B. HESSELSON, M.D.,† ERMENEGILDO DE RUVO, M.D.,‡
PETER L. GALLAGHER, M.D.,† CLAUDE S. ELAYI, M.D.,§ SANGHAMITRA MOHANTY,
M.D.,* JAVIER E. SANCHEZ, M.D.,* J. DAVID BURKHARDT, M.D.,* RODNEY HORTON, M.D.,*
G. JOSEPH GALLINGHOUSE, M.D.,* SHANE M. BAILEY, M.D.,* JASON D. ZAGRODZKY,
M.D.,* ROBERT CANBY, M.D.,* MONIA MINATI, M.D.,‡ LARRY D. PRICE, D.O.,* C. LYNN
HUTCHINS, R.N., C.C.R.C.,† MELODY A. MUIR, R.N., C.C.R.P.,† LEONARDO CALO', M.D.,‡

From the *Texas Cardiac Arrhythmia Institute at St. David's Medical Center, Austin, Texas, USA; †Electrophysiology Division, Central Baptist Hospital, Lexington, Kentucky, USA; ‡UOC Cardiologia, Policlinico Casilino ASL/RMB, Rome, Italy; §Division of Cardiovascular Medicine, Gill Heart Institute, University of Kentucky, Lexington, Kentucky, USA; ∥Department of Internal Medicine, Tong-Ji Hospital, Tong-Ji Medical College, Huazhong University of Science and Technology, Wuhan, China; ¶Department of Cardiology, University of Foggia, Foggia, Italy; #Division of Cardiology, Stanford University, Palo Alto, California, USA; ††Department of Biomedical Engineering, University of Texas, Austin, Texas, USA; ‡‡School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA

LV Lead Positioning Guided by ICE With Vector Velocity Imaging. *Introduction*: Intraoperative modality for "real-time" left ventricular (LV) dyssynchrony quantification and optimal resynchronization is not established. This study determined the feasibility, safety, and efficacy of intracardiac echocardiography (ICE), coupled with vector velocity imaging (VVI), to evaluate LV dyssynchrony and to guide LV lead placement at the time of cardiac resynchronization therapy (CRT) implant.

Methods: One hundred and four consecutive heart failure patients undergoing ICE-guided (Group 1, N = 50) or conventional (Group 2, N = 54) CRT implant were included in the study. For Group 1 patients, LV dyssynchrony and resynchronization were evaluated by VVI including visual algorithms and the maximum differences in time-to-peak (MD-TTP) radial strain. Based on the findings, the final LV lead site was determined and optimal resynchronization was achieved. CRT responders were defined using standard criteria 6 months after implantation.

Results: Both groups underwent CRT implant with no complications. In Group 1, intraprocedural optimal resynchronization by VVI including visual algorithms and MD-TTP was a predictor discriminating CRT response with a sensitivity of 95% and specificity of 89%. Use of ICE/VVI increased number of and predicted CRT responders (82% in Group 1 vs 63% in Group 2; OR = 2.68, 95% CI 1.08–6.65, P = 0.03).

Conclusion: ICE can be safely performed during CRT implantation. "Real-time" VVI appears to be helpful in determining the final LV lead position and pacing mode that allow better intraprocedural resynchronization. VVI-optimized acute resynchronization predicts CRT response and this approach is associated with higher number of CRT responders. (*J Cardiovasc Electrophysiol, Vol. 22, pp. 1034-1041, September 2011*)

Intracardiac ultrasound guided LV lead implant

Positioning of left ventricular pacing lead guided by intracardiac echocardiography with vector velocity imaging during cardiac resynchronization therapy procedure. Bai R, et al. J Cardiovasc Electrophysiol. 2011 Sep;22(9):1034-41

Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial

Anders Sommer¹*, Mads Brix Kronborg¹, Bjarne Linde Nørgaard¹, Steen Hvitfeldt Poulsen¹, Kirsten Bouchelouche², Morten Böttcher³, Henrik Kjærulf Jensen¹, Jesper Mø¹ - Longer¹ Jense Kristenson¹ Christian Condes¹, <u>Beter Theorem</u>

Rest perfusion Ant Ant-sept Sept Inf Post

Multipoint pacing

LV lead

- multipoint stimulation -

Biotronik Sentus

Boston-Scientific Acuity X4 SJM Quartet

Acute echocardiographic optimization of multiple stimulation configurations of cardiac resynchronization therapy through quadripolar left ventricular pacing: A tailored approach

Leonardo Calò, MD, FESC, <u>Annamaria Martino, MD, Ermenegildo de Ruvo, MD, Monia Minati, MD,</u> <u>Simona Fratini, MD, PhD, Marco Rebecchi, MD, Chiara Lanzillo, MD, PhD, Alessandro Fagagnini, MD,</u> <u>Alessio Borrelli, MD, Lucia De Luca, MD, PhD, and Luigi Sciarra, *Rome, Italy*</u>

Background Cardiac resynchronization therapy (CRT) is ineffective in approximately 30% of recipients, in part due to sub-optimal left ventricular (LV) pacing location. The Quartet LV lead, with 2 additional electrodes proximal to conventional bipolar lead electrodes, enables 10 different pacing configurations at four independent LV locations. In a CRT patient cohort, we sought to evaluate the spectrum of echocardiographic and electrocardiographic response over these 10 configurations, to select the optimal one in each patient. Moreover, we sought to evaluate the 6-months clinical and echocardiographic response to a "tailored approach" in which the optimal LV pacing configuration for CRT was determined by echocardiographic measures, QRSd and pacing capture thresholds.

Methods Twenty-two consecutive CRT indicated patients were implanted with a quadripolar CRT system (St. Jude Medical). Optimal LV pacing configuration was determined by echocardiographic measures, including velocity time integral (VTI), myocardial performance index (MPI) and mitral regurgitation (MR), and an electrocardiographic measure (QRS duration) during pacing from each of the configurations at pre-discharge. The optimal LV pacing vector was chosen for every patient. Clinical and echocardiographic assessment was repeated after 6 months.

Results Various configurations provided different VTI, MPI, MR and QRSd values. Conventional bipolar vectors (ie, D1-M2, D1-RVc, M2-RVc) were rarely associated with the best echocardiographic improvements and provided significantly worse VTI, MR, MPI, and QRSd values than the best configuration for every patient (P = .005, P = .05 and P = .03 for VTI; P = .01, P = .005 and P = .001 for MPI; P = .003, P = .01 and P = .005 for MR, P > .5, P = .01 and P = .05 for QRSd) Conversely, "unconventional" proximal configurations (ie, making use of P4 and M3 electrodes) were generally characterized by higher acute VTI, MR and MPI improvements. CRT devices were reprogrammed with an "unconventional" LV pacing configuration in 50% of patients. A significant improvement in New York Heart Association class (81%), LV ejection fraction (76%), end-diastolic and end-systolic volumes was observed after 6 months (P = .02, P < .001, P = .02 and P = .003, respectively).

Conclusions In this study, conventional bipolar vectors of quadripolar-CRT were rarely associated with the best echocardiographic improvements. Quadripolar CRT utilizing optimal LV pacing configuration was associated with a significant improvement in New York Heart Association class and LV ejection fraction after 6 months. (Am Heart J 2014;0:1-9.)

A Meta-Analysis Of Quadripolar Versus Bipolar Left Ventricular Leads On Post-Procedural Outcomes

Mohit K. Turagam, MD¹, Muhammad R. Afzal, MD², Sandia Iskander, MD², Madhu Reddy, MD², Luigi Di Biase, MD³, Andrea Natale, MD⁴, Dhanunjaya Lakkireddy, MD, FHRS²

Abstract

н

Objective: We aimed to perform a meta-analysis from eligible studies to analyze the true impact of QL when compared with BL with regard to post-procedural outcomes including lead deactivation, revision or replacement.

Background: Many observational and retrospective studies showed that quadripolar left ventricular leads (QL) are associated with better outcomes and fewer complications when compared with bipolar leads (BL).

Methods: We performed a comprehensive literature search through June 30, 2015 using: quadripolar, bipolar, left ventricular lead and CRT in Pubmed, Ebsco and google scholar databases.

Results: The analysis included 8 studies comparing QL and BL implantation. Post-procedural outcomes such as lead deactivation, revision or replacement were used as primary outcome and assessed with Mantel–Haenszel risk ratio (RR). Secondary outcomes included total fluoroscopy/procedure time, occurrence of phrenic nerve stimulation (PNS) and all-cause mortality on follow up. Follow-up duration for the studies ranged from 3 to 60 months. Compared with BL, the use of QL is associated with 52 % reduction (relative risk 0.48; 95% CI: 0.36-0.64, p=0.00001) in the risk of deactivation, revision or replacement of the LV lead. QL had significantly lower fluoroscopy/procedure time, PNS and all-cause mortality when compared with BL.

Conclusion: Our meta-analysis shows that QL implantation was associated with decreased risk of LV lead deactivation, revision or replacement when compared with BL.

	Qua	d	Bipo	lar		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Arias et al 2012	1	21	2	21	1.3%	0.47 [0.04, 5.68]	· · · ·	\longrightarrow
Behar et al 2014	13	357	44	364	14.5%	0.27 [0.15, 0.52]	←	
Corbisiero et al 2014	0	38	1	41	0.8%	0.35 [0.01, 8.87]	· · · · · · · · · · · · · · · · · · ·	\longrightarrow
Dhillion et al 2014	0	15	0	14		Not estimable		
Forleo et al 2012	1	22	6	23	1.7%	0.13 [0.01, 1.23]	·	
Forleo et al 2015	13	219	27	176	12.8%	0.35 [0.17, 0.70]	←	
MORE-CRT 2014	100	712	78	341	29.9%	0.55 [0.40, 0.77]		tivation,
Turakhia et al 2014	103	4379	733	19914	39.0%	0.63 [0.51, 0.78]	— = — revision o	r
							replaceme	ent
Total (95% CI)		5763		20894	100.0%	0.48 [0.36, 0.64]	◆	
Total events	231		891					
Heterogeneity: Tau ² = 0	.04; Chi²	= 9.49,	df = 6 (P	= 0.15);	l² = 37%			
Test for overall effect: Z	= 4.96 (P	< 0.00	001)				Eavours Quadrinolar Eavours Binolar	5
							r avours audurpolat i r avours bipolat	

Cost-Effectiveness Analysis of Quadripolar Versus Bipolar Left Ventricular Leads for Cardiac Resynchronization Defibrillator Therapy in a Large, Multicenter UK Registry

	Qua (n	adripolar = 319)	E (n	lipolar = 287)	
	n	Cost (£)	n	Cost (£)	p Value
ACS	35	115,029	21	67,544	0.13
Arrhythmia	59	51,218	65	55,557	0.23
Heart failure	51	137,695	75	195,841	0.003
System explantation and reimplantation	5	121,122	6	136,788	0.76
Generator replacement	9	142,026	19	273,276	0.03
RA/RV lead revision	27	88,918	24	69,840	0.21
LV lead revision	5	16,466	15	43,650	0.02
Total episodes/cost	191	672,474	225	842,484	<0.001

	Quadrip	olar	Bipol	ar		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	om, 95% Cl	
Arias et al 2012	3	21	7	21	29.3%	0.33 [0.07, 1.53]		-	_	
Behar et al 2014	0	357	16	364	11.1%	0.03 [0.00, 0.49]	← •			
Forleo et al 2015	10	230	25	188	59.7%	0.30 [0.14, 0.63]		-	PNS	
Total (95% CI)		608		573	100.0%	0.24 [0.09, 0.65]		\bullet		
Total events	13		48							
Heterogeneity: Tau ² =	0.29; Chi	z = 2.98	, df = 2 (F	P = 0.23	8); I ² = 339	%	0.01	01	10	100
Test for overall effect:	Z = 2.82 (P = 0.00	J5)				0.01	Quadripolar	Bipolar	100

	Quadrip	Quadripolar Bipola		Bipolar		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	I M-H, Random, 95% CI
Behar et al 2014	47	357	82	364	89.4%	0.52 [0.35, 0.77]]
Dhillion et al 2014	1	15	2	14	2.2%	0.43 [0.03, 5.33]]
Forleo et al 2015	6	230	4	188	8.4%	1.23 [0.34, 4.43]	1
Total (95% CI)		602		566	100.0%	0.56 [0.38, 0.81]] 🔶 mortality
Total events	54		88				
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00; Chi ² = 1.63, df = 2 (P = 0.44); I ² = 0%						
Test for overall effect:	Z = 3.07 (P = 0.00	02)				Quadripolar Bipolar

Turagam MK et al. J Atr Fibrillation. 2016 Aug-Sep; 9(2): 1472 Behar JM et al. JACC Clin Electrophysiol. 2017 Feb;3(2):107-116

Elettrocatetere Quadripolare sinistro

18%

+100K

impianti nel

mondo

18% RIDUZIONE RELATIVA DELLA MORTALITÀ PER QUALSIASI CAUSA a 18

mesi rispetto ai sistemi di CRT bipolari.²

87% IN MENO SUI COSTI DI RICOVERO nei primi 100 giorni dopo l'impianto.³

Boriari et al., Cardiac resynchronization therapy with a novel quadripolar lead decreases complications at ex. months: preliminary results of the MORE-CRT trial, ESC 2014, FP#887 Turaldria M, et al. Reduced Mortality with Quadripolar Vesus Bipade Left Ventricular Leads in Cardiac Resynchronization Therapy. PO01-51. HRS 2014. Dati d analisi retrospetive Contribution R, et al. Reduced Costs Post CRT with Quadripolar LV leads compared to Bipade LV leads. 2014 PO01-155. HRS 2014. San Francisco, California 7-10 margin 2014

I numeri rappresentatno i tempi di attivazione in ms relativi al punto più precoce

Resultati:

- Mappe ottiche di attivazione ottenute con laser scanning
- Dimostrano che la stimolazione da singolo elettrodo genera un fronte d'onda più ellittico, mentre la stimolazione da array lineare genera un fronte d'onda più piatto
- La maggior curvatura del fronte d'onda più ellittico provoca una minor velocità di conduzione del **13,3%**

Fast et al., Cardiovascular Research 1997; 33: 258–271

Poor CRT respons **Educyters** is bis interactions

MPP:

Decreased LV total activation by ~50% Reduced TDI measured dyssynchrony Improved LV ESV, LV EF, and pressure volume loops

In USA IDE Trial

Converted non-responders to responders Increased both super-responder

& responder rates

Menardi E, et al. Heart Rhythm 2015; 12(8):1762-9 Rinaldi CA, et al. J Card Fail. 2013; 19(11):731-8 Pappone C, et al. Heart Rhythm 2014; 11(3):394-401 Tomassoni F, et al. LBCT Abstract HRS2016

MultiPoint Pacing: Evidenze Cliniche

	•	
Stimo	aziona	Multicito

Autore	# Pazienti	Metodo	Risultati	Pubblicazione
Thibault et al.	19 (21)	Misurazione in acuto del dp/dt	Miglioramento del dp/dt nel 72% dei pazienti	Europace, 2013
Rinaldi et al.	41 (52)	Misurazione in acuto della dissincronia (TDI)	Riduzione della dissincronia nel 64% dei pazienti	Journal of Cardiac Failure, 2013
Rinaldi et al.	41 (52)	Misurazione in acuto della dissincronia (TDI)	Riduzione della dissincronia nel 64% dei pazienti. Incremento del VTI LVOT (valutato in 13 pazienti)	J Interv Card Electrophysiol, 2014
Pappone et al.	44	Misurazione in acuto con P-V Loop	Miglioramento dei parametri emodinamici	Heart Rhythm, 2014
Osca et al.	27	Misurazione in acuto della dissincronia (radial strain) e di parametri emodinamici (LVEF e CI)	Riduzione della dissincronia e incremento della LVEF e del CI	Europace 2015
Zanon et al.	29	Misurazione in acuto del dp/dt	Miglioramento del dp/dt nel 90% dei pazienti	Heart Rhythm, 2015
Menardi et al.	10	Misurazione in acuto del dp/dt; misurazione del tempo di attivazione endocardico	20% di incremento relativo del dp/dt; 15% di riduzione relativa del tempo totale di attivazione	Heart Rhythm, 2015
Sohal et al.	16	Misurazione tempo di attivazione e dp/dt in acuto	Miglioramento del dp/dt e del tempo di attivazione specialmente nei pazienti non LBBB puri	Heart Rhythm, 2015
Pappone et al.	44	Misurazione echo a 12 mesi	33% di incremento del numero di pazienti responder	Heart Rhythm, 2015
Forleo et al.	313	Misurazione durata del QRS e frazione di elezione LVEF	Significativa riduzione del QRS	Europace 2015
Zanon et al.	110	Valutazione ESVi, Classe NHYA e PACKER's score a 12 Mesi	Miglioramento dell' outcome clinico nel 90% dei pazienti	Heart Rhythm Journal - August 2016
Tomassoni et al.	506	Valutazione della sicurezza e dell'efficacia	Sicuro ed efficace. 87% di responder. 100% dei non responder trasformati in responder	Late Breaking Clinical Trial Session, HRS 2016

MIGLIORA L'EMODINAMICA

MPP

MIGLIORA LA MECCANICA

MIGLIORA L'ATTIVAZIONE ELETTRICA

Menardi et al. Heart Rhythm 2015

Stimolazione endocardica

ALternate Site Cardiac ResYNChronization (ALSYNC): a prospective and multicentre study of left ventricular endocardial pacing for cardiac resynchronization therany European Heart Journal (2016) 37, 2118–2127

Successful LV endocardial LV lead insertion: 89%

5 peri-procedural CVA 14 TIA's in 9 pts (86% low PT INR) 6 LV lead dislodgements

138 failed/non-response CRT pts) Lifelong

Table 3 Echocardiographic indices and clinical outcomes

	Baseline (n = 118)	6 months (n = 105)	Change	P-value*	Response definition	Response rate for all patients (n = 118)	Response rate for non-responders with prior CRT (n = 31)
LVESV	149 ± 79 mL	$121 \pm 74 \mathrm{mL}$	29 ± 60 mL reduction	< 0.0001	≥15% relative reduction	55%	47%
					≥30% relative reduction	33%	5%
LVEF	29 ± 10%	36 ± 12%	$7 \pm 10\%$ increase	< 0.0001	≥5% absolute increase	64%	61%
Mitral regurgitation	Moderate/ severe: 41%	Moderate/ severe: 30%		0.035	≥1 class improvement	33%	43%
NYHA class	1/11/111/1V: 3%/ 20%/69%/7%	I/II/II/IV: 19%/ 51%/28%/2%		< 0.0001	≥1 class improvement	59%	52%
Six-minute walking test	332 ± 117 m	388 ± 135 m	47 ± 87 m increase	0.004	≥60 m increase	44%	42%

LVESV: left ventricular end-systolic volume; LVEF: left ventricular ejection fraction; NYHA: New York Heart Association; CRT: cardiac resynchronization therapy. *P-value from repeated-measures linear or multinomial regression model.

Usefulness of His Bundle Pacing to Achieve Electrical Resynchronization in Patients With Complete Left Bundle Branch Block and the Relation Between Native QRS Axis, Duration, and Normalization

Alexandra E. Teng, MD^a, Daniel L. Lustgarten, MD, PhD^b, Pugazhendhi Vijayaraman, MD^c, Roderick Tung, MD^d, Kalyanam Shivkumar, MD, PhD^a, Galen S. Wagner, MD^e, and Olujimi A. Ajijola, MD, PhD^{a,*}

His Bundle pacing (HBP) restores electrical synchronization in left bundle branch block (LBBB); however, the underlying mechanisms are poorly understood. We examined the relation between native QRS axis in LBBB, a potential indicator of the site of block, and QRS normalization in patients with LBBB. Data from patients (n = 41) undergoing HBP at 3 sites were studied (68 ± 13 years, 13 women). Study criteria included strictly defined complete LBBB and successful implantation of a permanent HBP lead. Preprocedure and postprocedure electrocardiograms were reviewed independently by 2 blinded readers. QRS axis and duration were measured to the nearest 10° and 10 ms, respectively. QRS narrowing or normalization was the primary end point. Of 29 patients meeting study criteria, 9 had frontal plane QRS axes between -60° and -80° , 10 from -40° to 0° , and 10 from $+1^{\circ}$ to $+90^{\circ}$. QRS narrowing occurred in 24 patients (83%, 44 ± 34 ms, p <0.05). Percent QRS narrowing by axis were $26 \pm 19\%$, $29 \pm 25\%$, and $28 \pm 23\%$, respectively. No correlation between prepacing QRS axis and postpacing narrowing was identified ($r^2 = 0.001$, p = 0.9). In patients with or without QRS normalization after HBP, mean QRS duration was 155 ± 21 vs 171 ± 8 ms, respectively, p = 0.014. HBP induces significant QRS narrowing in most patients and normalization in patients with shorter baseline ORS duration. In conclusion, the lack of correlation between native QRS axis and narrowing suggests that proximal His-Purkinje block causes most cases of LBBB, or that additional mechanisms underlie HBP efficacy. Further studies are needed to better understand how to predict those patients in whom HBP will normalize LBBB. © 2016 Elsevier Inc. All rights reserved.

Α

Absolute Change in QRS Duration

Long-Term Results of Triventricular Versus Biventricular Pacing in Heart Failure

A Propensity-Matched Comparison

Rui Providencia, MD, PHD, Dominic Rogers, MD, Nikolaos Papageorgiou, MD, PHD, Adam Ioannou, MBBS, BSc, Anthony James, MBBS, BSc, Girish Babu, MD, Vanessa Cobb, MD, Syed Ahsan, MD, Oliver R. Segal, MD, Edward Rowland, MD, Martin Lowe, PHD, Pier D. Lambiase, PHD, Anthony W.C. Chow, MD

METHODS This single-center, propensity score-matched cohort study compared 34 patients with advanced heart failure who underwent implantation with Tri-V devices versus 34 control subjects treated with Bi-V pacing. Clinical outcomes during a median of 2,478 days (IQR: 1,183 to 3,214 days) were compared.

RESULTS Tri-V-treated patients compared with Bi-V-treated patients presented with a trend for shorter battery longevity (time to box change, 1,758 \pm 360 days vs. 1,993 \pm 408 days; p = 0.072). Incidence of lead dislodgement (Tri-V vs. Bi-V, 0.86 vs. 1.10 per 100 patient-years; p = 0.742), device-related infection (Tri-V vs. Bi-V, 1.83 vs. 1.76 per 100 patient-years; p = 0.341) was comparable in the 2 groups. Episodes of ventricular arrhythmia requiring implantable cardioverter-defibrillator intervention occurred more frequently in the Bi-V group versus the Tri-V group (6.55 vs. 16.88 per 100 patient-years; adjusted hazard ratio: 0.31; 95% confidence interval: 0.14 to 0.66; p = 0.002). Lower all-cause mortality and heart transplant was observed in the Tri-V group compared with the Bi-V group (6.99 vs. 11.92 per 100 patient-years; adjusted hazard ratio: 0.44; 95% confidence interval: 0.23 to 0.85; p = 0.015).

CONCLUSIONS Tri-V displayed a similar safety profile compared with Bi-V and was associated with potential benefits regarding long-term survival and ventricular arrhythmia burden. (J Am Coll Cardiol EP 2016;2:825-35)

	Incidence (Per 100 Patient-Yrs)				
	Tri-V	Bi-V	Hazard Ratio	95% CI	p Value
Device-related infection	1.83 (0.71-4.60)	1.76 (0.60-5.05)	1.00	0.22-4.54	0.996
Lead failure	0.86 (0.24-3.09)	1.10 (0.30-3.91)	0.72	0.10-5.11	0.742
Lead dislodgement	1.91 (0.74-4.80)	2.03 (0.87-4.66)	0.73	0.19-2.72	0.635
Refractory phrenic nerve capture	0.48 (0.08-2.65)	1.84 (0.55-4.67)	0.33	0.04-3.20	0.341

Providencia R et al. J Am Coll Cardiol EP 2016;2:825-35

Leadless CRT

A Comprehensive Review A Comprehensive Review Although current leadless pacemakers are limited to right ventricular pacing, future advanced, communicating, multicomponent

systems are expected to expand the potential benefits of leadless therapy to a larger patient population

Reddy V, Tjong FVJ – Circulation, 2017

Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the Wireless Stimulation Endocardially for CRT (WiSE-CRT) study

Angelo Auricchio^{1*}, Peter-Paul Delnoy², Christian Butter³, Johannes Brachmann⁴, Lieselot Van Erven⁵, Stefan Spitzer⁶, Tiziano Moccetti¹, Martin Seifert³, Thanasie Markou², Karolyi Laszo⁶, and François Regoli¹, for the Collaborative Study Group

Methods and results Seventeen HF patients were enroled and categorized as: (i) patients in whom attempted coronary sinus lead implantation for CRT had failed (n = 7); (ii) patients with a previously implanted CRT device, not responding to CRT (n = 2); and (iii) patients with previously implanted pacemakers or implantable cardioverter-defibrillator and meeting the standard indications for CRT (n = 8). System implantation was achieved in 13 patients (76.5%); mean R-wave amplitude was 5.6 \pm 3.2 mV and the mean pacing threshold was 1.6 \pm 1.0 V, respectively. In one patient, no sufficient pacing thresholds were found; in three patients pericardial effusion occurred. Biventricular pacing was recorded in 83% and 92% of the patients at 1 month and 6 months, respectively. QRS duration was shorter during biventricular pacing compared with right ventricular pacing at 1 month (-41 ms; P = 0.0002) and 6 months (-42 ms; P = 0.0011), respectively. At the 6-month follow-up, two-thirds of the patients had at least one functional class change. Left ventricular ejection fraction significantly increased (P < 0.01) by 6 points at the 6-month follow-up.

Conclusion The feasibility of providing an endocardial stimulation for CRT with a leadless technology was successfully demonstrated. Despite the promising results for a novel technology, further study is required to definitively conclude the safety and the performance of the system.

Auricchio A et al. Europace (2014) 16, 681–688

Safety

There were 19 SAE occurring within 6 months of the study procedures, most of these (12 events, 63%) were comorbidities that were neither procedure-related nor system-related. Seven of these events were adjudicated to be procedure-related in six patients (35%). As noted above, there were three peri-procedural pericardial effusion events that occurred; one patient death occurred with one of these events. One SAE occurred as a groin haematoma. In two events, a transmitter position revision was needed due to the loss of the biventricular pacing. One battery replacement was performed during one of the transmitter revisions. As noted above, one other battery replacement was needed but not performed.

WISE (Wireless Stimulation Endocardially Technology) **System**

transmitter implanted SQ to a receiver electrode in the LV

Cardiac Resynchronization Therapy With **WISE (Wireless** Wireless Left Ventricular Endocardial Pacing Stimulation The SELECT-LV Study **Endocardially Technology) System**

Prospective multicenter 35 pts failed CRT implant/non-responders Successful implant: 97%

Improvement in HF CCS in 85% pts Positive CRT Echo (reduction in LVESV >15%): 52% pts at 6M

TABLE 3 Device- or Procedure-Related Adverse Even	ts (n = 35)
<24 h	3 (8.6%)
VF during catheter contact with LV endocardium	1
Electrode embolization to lower extremity	1
Femoral artery fistula (required surgical repair)	1
24 h to 1 month	8 (22.3)
Acute CVA (AF noncompliant with anticoagulation)	1
Femoral pseudoaneurysm	2
Pocket hematoma (generator)	1
Suspected infection (generator site)	3
Death (following VF during initial implant procedure)	1
1 to 6 months	3 (8.6)
Defective transmitter circuitry	3

JACC 2017 69:17.

Complications: 8.6% pts at 24 hrs 22% at 24 hr – 1M

Future of CRT

Newer pacing strategies

Epicardial (Access to greater number of LV sites)

New leads (Xiphoid approach, Improved Thoracoscopic access)

Endocardial (More physiological activation of LV) Improved transseptal/endocardial technology

WISE technology (SOLVE-CRT)

Multisite Pacing (Improve intra LV synchrony)

2 CS leads (1 CS & 1 epicardial)

Multipoint Pacing (MORE CRT Trial, MPPregistry)

Integration of CRT pacing

CRT & LVAD, Cardiac contractility modulation (CCM), Baroreflex activation therapy

Summary

CRT Response: Inadequate and unpredictable

CRT Non-response can be attributed to many factors

LV lead placement is important

Patient specific not anatomical based LV Lead placement

Target the site of maximal electrical delay or maximal mechanical delay

Quadripolar LV leads: Standard of care

MPP or multisite LV lead pacing if single site not effective

Newer technologies may favor greater CRT response by LV endocardial pacing compared to standard transvenous CS pacing