

TURIN, 20^{TH} - 21^{ST} NOVEMBER 2008

GREAT INNOVATIONS

4TH JOINT MEETING WITH MAYO CLINIC

 $4^{\mbox{\tiny TH}}$ Turin cardiovascular nursing convention

 \bigcirc

SESSION II: PERSPECTIVES IN ISCHEMIC HEART DISEASE (PART II)

N. Caplice (Cork—Ireland)

Cell therapy for acute Myocardial Infarction: where are we at in 2008?

Cell Therapy for Acute MI-2008

Noel Caplice Professor of Cardiovascular Sciences *Centre for Research in Vascular Biology (CRVB)*, Consultant Cardiologist, Cork University Hospital

Torino Nov 2008

Porcine AMI model for Cell Therapy

- 90 min balloon occlusion in pig LCx /LAD coronary artery
- Autologous cell therapy (CPC or MNC) at 48 hours post AMI
- PET-CT tracking of CPC post therapy
- Cardiac MRI imaging(+/- Gd) at 48 hours and 2 months post AMI

Model TOPCARE AMI Clinical Trial

Experimental AMI model

Tracking of CPC *in vivo* & Determining Paracrine Effects

Human and porcine circulating progenitor cells (CPC)

CPC cultured on FN and EPC medium

Dynamic tracking of ¹⁸F-FDG labeled CPC during intracoronary injection in porcine AMI

А

в

Myocardial infarction

Post-injection

Doyle et al J Nucl Med 2007

Myocardial Infarct size -MRI

	CTL	CPC	MNC
Infarct	12.5	6.0	13.4
size-LCx (g)	±1.2	±1.9	±3.0
Infarct size (% of LV mass)	16.6 ±1.7	8.7 ±2.7	17.6 ±3.2
Infarct size (% of LV mass)	16.6 ±1.7	8.7 ±2.7	17.6 ±3.2

Transmural MI Gd HE

24 animals studied

Paracrine factors from CPC induce border zone (IRT) hypertrophy post AMI

MNC.CM

MNC

دو^ر

35

30

25

20

15

10

5

Change in NIRT mass (g)

(B)

Border zone cardiomyocytes

Β.

Α.

Doyle et al Stem Cells Dev 2008

Secreted factor(s) from CPC/MNC augment cardiomyocyte survival post hypoxia

Secreted factor(s) from CPC/MNC augment cardiomyocyte hypertrophy *in vitro*

Neonatal rat cardiomyocytes: Hypertrophy

Progenitor-derived Paracrine Factors

- In vitro effects on hypoxic cardiomyocytes
- Acute repair and pro-survival effects
- Acute in vivo hemodynamic effects
- Chronic in vivo hemodynamic
- Chronic cardiotrophic effects

Porcine endothelial progenitor cells transcriptional signature No RNA Ladder No RNA Ladder No RT hCPC pCPC No RT hCPC pCPC eNOS CD34 GAPDH cKit Cytokine Flk1 Array

CD133

Cytokines secreted from porcine EPC in vitro

Inhibiting GFs in CM abrogates anti-apoptosis effect in border zone of post AMI

Apoptotic signals in the border zone myocardium: 24 hrs post MI

Acute hemodynamic effects 24 hours post infarction

Functional analysis at 8 wks post infarction

А

LV Remodeling at 8 weeks post infarction

ESV (mL)	79.4±4.3	37.4±1.9 *	32.2±1.1	31.2±2.2	38.1±1.3			
EDV (mL)	130.4±8.6	98.2±11.1 *	99.1±7.9	93.3±4.1	105.7±8.6			
ESP								
(mmHg)	85.8±11.1	97.5±18.1	86.1±7.4	96.7±23.9	81.7±7.4			
EDP								
(mmHg)	13.33±1.2	13.2±4.9	13.9±2.7	26.5±9.2	7.3±1.9			

X-vivo CM

IGF1ab

lgG

Border zone cardiomyocyte hypertrophy at 8 week post MI

Infarct area at 24 hrs post MI

Effect of BMSC on Global EF

Control

Janssens 2006

BMSC reduced infarct size by 30% at 4 mths post treatment

	Baseline		4 months Dif		Difference		Treatment effect*	р
	Control (n=30)	BMSC (n=30)	Control(n=30)	BMSC (n=30)	Control (n=30)	BMSC (n=30)		
LVEDV index (mL/m²)	83.1 (147)	81.2 (14.0)	85.9 (19.5)	84.1 (20.8)	2.8 (15.0)	2.8 (15.2)	0.997 (0.915 to 1.086)	0.95
LVESV index (mL/m²)	44-4 (12-3)	42.2 (10.5)	45.0 (17.9)	41.0 (15.5)	0.6 (11.6)	-1.1(11.2)	0.980 (0.861 to 1.115)	0.76
Global LVEF (%)	46.9 (8.2)	48.5 (7.2)	49.1(10.7)	51.8 (8.8)	2.2 (7.3)	3.4 (6.9)	1.036 (0.961 to 1.118)	0.36
LV mass index (g/m²)	64.5 (15.8)	57.0 (11.0)	58·7 (11·1)	50.9 (9.6)	-58 (11/9)	-6.1(6.8)	0.931 (0.864 to 1.003)	0.06
Late contrast enhancement (g)	22-3 (16-1)	20.6 (14.3)	147 (9.3)	10-3 (8-0)	-7.9 (8.5)	-10.2 (7.9)	0.717 (0.530 to 0.971)	0.036
Systolic wall thickening in infarct area (%)	21.8 (19.21)	23.6 (17.9)	23.7 (18.9)	29-3 (21-7)	1.9 (21.4)	5.7 (24.4)	4·99 (-5·3 to 15·3)	0.35
Systolic wall thickening in border zone (%)	32.7 (15.4)	36.6 (18.9)	38-4(21-1)	40.8 (17.2)	5.7 (18.8)	4-2(22-6)	-0.84 (-10.5 to 8.9)	0-87

LVEF=LV ejection fraction. Data in first six columns are mean (SD). *Expressed as ratios (BMSC/CONTROL) of adjusted means for all variables (ANCOVA) with 95% CIs, except for wall thickening where expressed as differences (BMSC-CONTROL) in adjusted means (ANCOVA) with 95% CIs, except for wall thickening where expressed as differences (BMSC-CONTROL) in adjusted means (ANCOVA) with 95% CIs, except for wall thickening where expressed as differences (BMSC-CONTROL) and adjusted means (ANCOVA) with 95% CIs, except for wall thickening where expressed as differences (BMSC-CONTROL) in adjusted means (ANCOVA) with 95% CIs, except for wall thickening where expressed as differences (BMSC-CONTROL) and (BMSC-CONTROL) in adjusted means (ANCOVA) with corresponding 95% CIs.

Table 2: LV volume and mass indices, global and regional LV function, and late contrast enhancement 4 days after intracoronary infusion and at 4 months' follow-up

Infarct size significantly decreased by BMSC (28% treatment effect)

Janssens 2006

Conclusions

- Progenitor cell therapy has potent paracrine effects on at risk cardiomyocytes
- Effects are acute and chronic (both antiapoptotic and cardiotrophic)
- Specific growth factors implicated acutely
- Border zone apoptosis may be novel therapeutic target in post AMI therapy
- Elucidation of relationship between acute and chronic effects necessary for therapy selection

BioSciences Institute

Acknowledgements

- B Hynes
- A Kumar
- P Metharom
- J O Sullivan
- J Schmeckpeper
- D Sheehan
- J Choi

- K Martin
- B Rejman-Bochenek
- S Weiss
- G Murphy
- P Stalboerger
- C Martin
- N Sahawney
- B Doyle
- S Reiderer (Mayo Clinic)