

LVAD and Destination Therapy: How much should I push on Technology ?

Antonio Loforte, MD, PhD

S. Orsola Hospital, Bologna University, Dept Cardiothoracic, Transplantation and Vascular Surgery, Bologna, Italy

No Disclosures

Antonio Loforte, MD, PhD

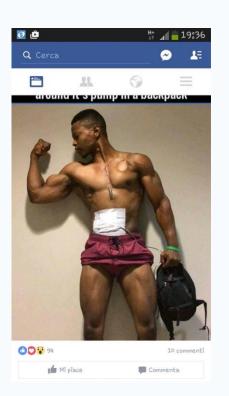
S. Orsola Hospital, Bologna University, Dept Cardiothoracic, Transplantation and Vascular Surgery, Bologna, Italy

1974 – Workshop on Left Ventricular Assist


Transplantation has established that replacing the patient's own worn-out pump with a healthy one corrects the attendant circulatory ills. Hence, it can be expected that upon receipt of a well-functioning mechanical circulatory device, the patient will be restored to a healthy, productive life.

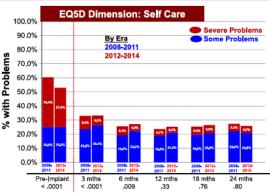
thereare board

Theodore Cooper, M.D. Director, NHLI, and Chairman of the Workshop on Left Ventricular Assist Pump



DT definition ...

There will be no more DT category definition ...

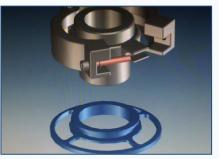


DT: it might be restriction or ... pt choice

Intermecs Continuous Flow LVAD/BiVAD implants: 2008 - 2014, n= 12030

J Heart Lung Transplant 2015;34:1495-1504

Durability



1.5

5

1

3

55

BiVAD pulsatile

LVAD+RVAD

LVAD Axial: N=3966, deaths=703

24

21

BIVAD Centrifugal: n=63, deaths=25

15

Months post implant

18

P(overall) < ,0001

6

LVAD Centrifugal vs. Axial: p= 04 BiVAD Centrifugal vs. Axial: p=.56

9

Event: Death (censored at transplant and recovery)

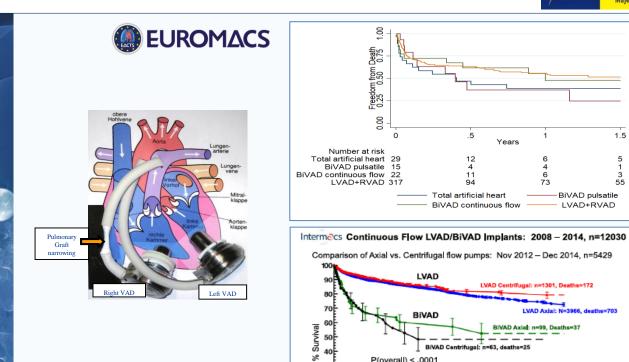
12

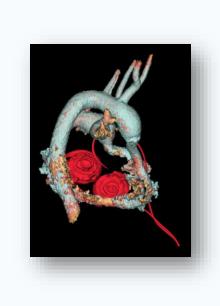
30E

20

10F

0


з

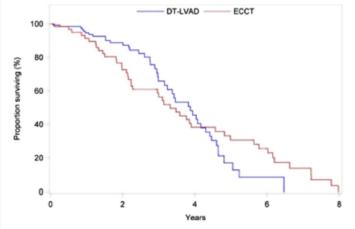

1

6

4

6 73

J Heart Lung Transplant 2015;34:1495-1504



Am J Cardiol 2015;116:573-579

۲

Comparison of 2-Year Outcomes of Extended Criteria Cardiac Transplantation Versus Destination Left Ventricular Assist Device Therapy Using Continuous Flow

Mani A. Daneshmand, MD^a, Arun Krishnamoorthy, MD^{b,c,a}, Marc D. Samsky, MD^b, G. Michael Felker, MD, MHS^{b,c}, John A. Pura, MPH^e, Yuliya Lokkhnygina, PhD^o, Adrian F. Hernandez, MD, MHS^{b,c}, Paul B. Rosenberg, MD^b, Laura J. Blue, NP^b, Jacob N. Schroder, MD^a, Joseph G. Rogers, MD^{b,c}, Carmelo A. Milano, MD^a, and Chetan B. Patel, MD^{b,c}

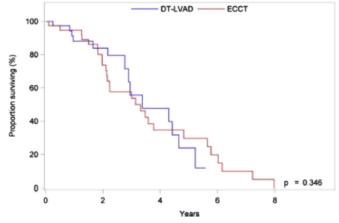
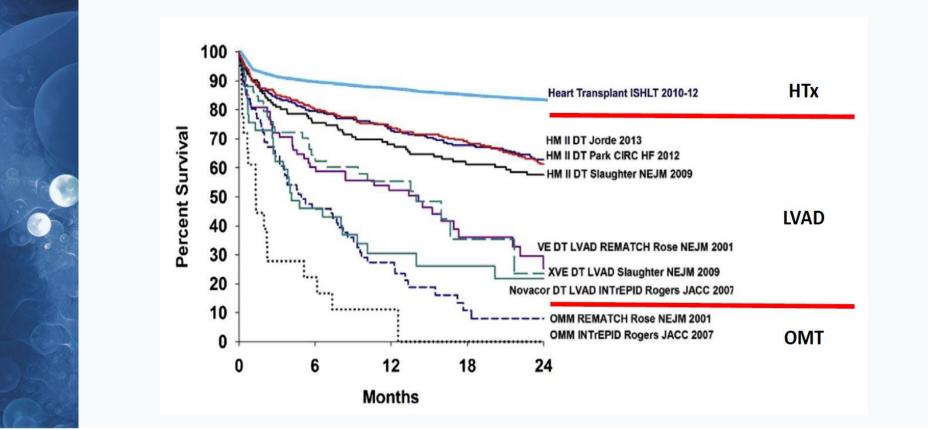



Figure 1. Kaplan-Meier estimates of survival for extended criteria cardiac transplantation versus continuous flow destination therapy left ventricular assist device recipients, in the overall unmatched cohort.

Figure 2. Kaplan–Meier estimates of survival for extended criteria cardiac transplantation versus continuous flow destination therapy left ventricular assist device recipients, after propensity score matching.

Raising Standards through Education and Training

Seventh INTERMACS annual report: 15,000 patients and counting

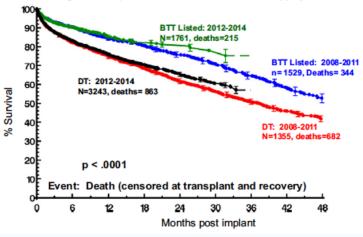
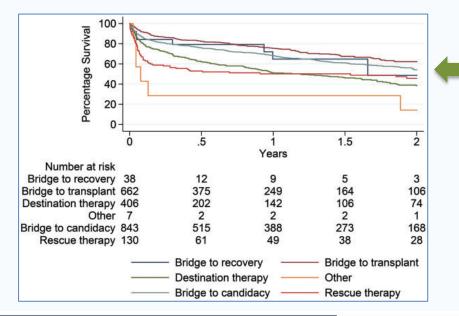

James K. Kirklin, MD,^a David C. Naftel, PhD,^a Francis D. Pagani, MD, PhD,^b Robert L. Kormos, MD,^c Lynne W. Stevenson, MD,^d Elizabeth D. Blume, MD,^e Susan L. Myers, BBA, QMIS,^a Marissa A. Miller, DVM, MPH,^f J. Timothy Baldwin, PhD,^f and James B. Young, MD^g

Table 2 CF and BiVAD Implants: April 2008 to December 2014 (n = 12,030)

	Implant era (years)									
	2008 to	2011	2012		2013		2014		Total	
Device strategy at time of implant	N	%	N	%	N	%	N	%	N	%
BTT listed	1,529	32.2%	404	18.2%	623	23.6%	734	30.3%	3,290	27.3%
BTT likely	1,163	24.5%	513	23.1%	511	19.3%	323	13.3%	2,510	20.9%
BTT moderate	480	10.1%	230	10.4%	273	10.3%	187	7.7%	1,170	9.7%
BTT unlikely	164	3.5%	73	3.3%	67	2.5%	54	2.2%	358	3.0%
DT	1,355	28.6%	983	44.2%	1,152	43.6%	1,108	45.7%	4,598	38.2%)
BTR	29	0.6%	11	0.5%	10	0.4%	4	0.2%	54	0.5%
Rescue therapy	15	0.3%	7	0.3%	6	0.2%	10	0.4%	38	0.3%
Other	9	0.2%	0	0%	0	0%	3	0.1%	12	0.1%
Total	4,744	100%	2,221	100%	2,642	100%	2,423	100%	12,030	100%

Intermecs Continuous Flow LVAD/BiVAD Implants: 2008 – 2014, n=12030



J Heart Lung Transplant 2015;34:1495-1504

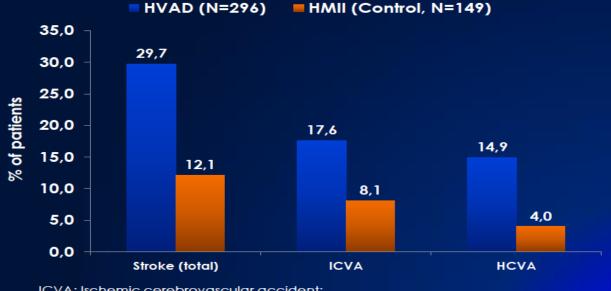
The European Registry for Patients with Mechanical Circulatory Support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): second report

Strategy	<50 years	50-64 years	65-70 years	>70 years	Total
Bridge to recovery	24 (2)	28 (2)	3 (1)	2 (1)	57 (2)
Bridge to candidacy	402 (42)	568 (39)	60 (18)	22 (12)	1052 (36)
Bridge to transplant	332 (34)	414 (28)	48 (14)	19 (10)	813 (28)
Destination therapy	22 (2)	170 (12)	157 (47)	109 (60)	458 (16)
Rescue therapy	68 (7)	105 (7)	19 (6)	18 (10)	210 (7)
Other	4 (0)	5 (0)	2 (1)	0 (0)	11 (0)
Unknown	112 (12)	176 (12)	45 (13)	13 (7)	346 (12)
Total	964	1466	334	183	2947

European Journal of Cardio-Thoracic Surgery 0 (2017) 1-8

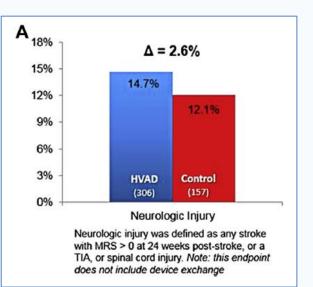
Event		Centrifugal-Flow Pump Group (N=151)		Axial-Flow Pump Group (N=138)		P Value
	no. of patients with events (%)	no. of events	no. of patients with events (%)	no. of events		
Suspected or confirmed pump thrombosis	> 0	0	14 (10.1)	18	NA	<0.001
Stroke						
Any stroke	12 (7.9)	12	15 (10.9)	17	0.73 (0.35-1.51)	0.39
Hemorrhagic stroke	4 (2.6)	4	8 (5.8)	8	0.46 (0.14–1.48)	0.18
Ischemic stroke	8 (5.3)	8	9 (6.5)	9	0.81 (0.32-2.05)	0.66
Disabling stroke	9 (6.0)	9	5 (3.6)	5	1.65 (0.57-4.79)	0.36
Other neurologic event†	9 (6.0)	9	8 (5.8)	8	1.03 (0.41-2.59)	0.95
Bleeding						
Any bleeding	50 (33.1)	100	54 (39.1)	98	0.85 (0.62-1.15)	0.29
Bleeding requiring surgery	15 (9.9)	15	19 (13.8)	21	0.72 (0.38–1.36)	0.31
Gastrointestinal bleeding	24 (15.9)	47	21 (15.2)	36	1.04 (0.61–1.79)	0.87
Sepsis	14 (9.3)	19	9 (6.5)	10	1.42 (0.64–3.18)	0.39
LVAS drive-line infection	18 (11.9)	21	9 (6.5)	11	1.83 (0.85-3.93)	0.12

Mehra et al . A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure NEJM 2017 Feb 2;376(5):440-450



Event	Centrifugal-Flow Pump Group (N = 189)		Axial-Flow Pump Group (N = 172)		Hazard Ratio (95% CI)	P Value†
	no. of patients with event (%)	no. of events	no. of patients with event (%)	no. of events		
Suspected or confirmed pump thrombosis	2 (1.1)	2	27 (15.7)	33	0.06 (0.01-0.26)	< 0.001
Pump thrombosis resulting in reoperation or removal of device	0	0	21 (12.2)	25	NA	<0.001
Stroke						
Any stroke	19 (10.1)	22	33 (19.2)	43	0.47 (0.27-0.84)	0.02
Hemorrhagic stroke	8 (4.2)	8	16 (9.3)	17	0.42 (0.18-0.98)	0.06
Ischemic stroke	12 (6.3)	14	23 (13.4)	26	0.44 (0.22-0.88)	0.03
Disabling stroke	13 (6.9)	15	9 (5.2)	11	1.25 (0.54-2.93)	0.66
Other neurologic event <u>;</u>	22 (11.6)	25	15 (8.7)	16	1.27 (0.66-2.45)	0.39
Bleeding						-
Any bleeding	81 (42.9)	187	90 (52.3)	206	0.71 (0.53-0.96)	0.07
Bleeding that led to surgery	23 (12.2)	29	30 (17.4)	34	0.66 (0.38-1.13)	0.18
Gastrointestinal bleeding	51 (27.0)	107	47 (27.3)	100	0.92 (0.62-1.37)	1.00
Sepsis	26 (13.8)	37	24 (14.0)	28	0.95 (0.55-1.66)	1.00
LVAS drive-line infection	45 (23.8)	68	34 (19.8)	59	1.15 (0.73-1.79)	0.37
Local infection not associated with LVAS	70 (37.0)	108	60 (34.9)	114	1.00 (0.71-1.42)	0.74
Right heart failure						
Any right heart failure	60 (31.7)	73	48 (27.9)	53	1.12 (0.77-1.64)	0.49
Right heart failure managed with RVAS	6 (3.2)	6	8 (4.7)	8	0.67 (0.23-1.94)	0.59
Cardiac arrhythmia						
Any cardiac arrhythmia	71 (37.6)	108	70 (40.7)	105	0.88 (0.63-1.23)	0.59
Ventricular arrhythmia	45 (23.8)	67	39 (22.7)	64	1.04 (0.67-1.59)	0.80
Supraventricular arrhythmia	33 (17.5)	40	36 (20.9)	37	0.79 (0.49–1.26)	0.42
Respiratory failure	45 (23.8)	61	39 (22.7)	46	1.04 (0.68-1.59)	0.80
Renal dysfunction	25 (13.2)	29	18 (10.5)	18	1.23 (0.67-2.25)	0.52
Hepatic dysfunction	8 (4.2)	8	7 (4.1)	7	0.98 (0.36-2.71)	1.00

2018, at NEJM.org.


Background: Stroke Events in ENDURANCE at <u>**2 Years**</u> on the original device

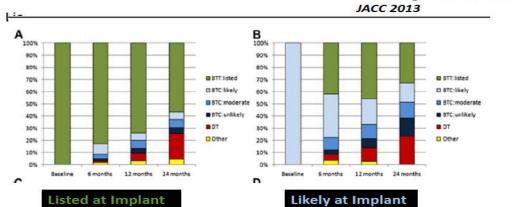
ICVA: Ischemic cerebrovascular accident; HCVA: Hemorrhagic Cerebrovascular accident Rogers JG and Pagani FD et al. NEJM 2017; 376:451-460.

	HVAD ENDURANCE (n = 296)	HVAD ENDURANC Supplement (n = 308)	al p
All stroke	22.3	16.9	0.10
Ischemic cerebrovascular event	13.9	13.0	0.81
Hemorrhagic cerebrovascular event	10.5	5.2	0.02
Disabling stroke	8.1	6.5	0.53
Transient ischemic attack	5.4	4.2	0.57

JACC: HEART FAILURE VOL. 6, NO. 9, 2018 SEPTEMBER 2018:792-802

	Study Device (n = 308)		Control (n =		
	Patients With Events	Number of Events	Patients With Events	Number of Events	p Value
Major bleeding	159 (51.6)	310	89 (56.7)	196	0.33
Cardiac arrhythmia	105 (34.1)	151	49 (31.2)	56	0.60
Hepatic dysfunction	12 (3.9)	12	6 (3.8)	6	>0.99
Hypertension	40 (13.0)	54	20 (12.7)	21	>0.99
Major infection	166 (53.9)	300	93 (59.2)	181	0.28
Driveline exit site infection	50 (16.2)	59	19 (12.1)	22	0.27
Device malfunction/failure	74 (24.0)	107	38 (24.2)	47	>0.99
Hemolysis	4 (1.3)	5	9 (5.7)	9	0.01
Stroke	52 (16.9)	75	23 (14.6)	25	0.60
Ischemic cerebrovascular event	40 (13.0)	58	12 (7.6)	14	0.09
Hemorrhagic cerebrovascular event	16 (5.2)	17	11 (7.0)	11	0.53
TIA	13 (4.2)	13	1 (0.6)	1	0.04
Renal dysfunction	32 (10.4)	35	23 (14.6)	25	0.22
Respiratory failure	61 (19.8)	77	31 (19.7)	37	>0.99
Right heart failure	109 (35.4)	116	60 (38.2)	65	0.61
Pump replacement	16 (5.2)	NA	18 (11.5)	NA	0.02
Exchange for pump thrombosis	14 (4.5)	NA	16 (10.2)	NA	0.03

Look at History to get the Present ...



- 1909 Carrel, Htx in animals
- 1938 Demikhov 1964 DeBakey, Liotta, TAH project in animals
- 1966 DeBakey, Partial Artificial Heart (LVAD) ... due lack of TAH and Htx
- 1967 Barnard, Heart Transplantation
- 1969 Cooley, **two-stage Cardiac Replacement** concept (TAH) ... due to **lack of donors (DCD)** ... with 'Shumway Stanford Nightmare' concept
- March1971: 167 Htx in 20 countries with 143 deaths ... Htx abandon for a decade ... Research funds redirected towards implantable LVAD as permanent support
- 1985 Copeland, TAH as successful BTT ... thx to Cyclosporine
- 1994, 1998 FDA approval for pulsatile LVAD as BTT
- 1998 Hetzer, DeBakey, first CF LVAD implanted
- 2002, FDA approval for DT treatment

2018, we do have again a lack of donors matter and Htx seems to be not enough ...

What Happens To Transplant Eligibility After Prolonged VAD Support? 1/3 of Surviving Candidates No Longer Listed

Teuteberg. G. Stewart et al

Worldwide 50,000 candidates are waiting for heart transplantation, yet only approximately 4000 heart transplants are performed each year

Miller, L, et al. Is left ventricular assist device therapy underutilized in the treatment of heart failure? Circulation. 2011;123:1552-1558. Peura, J, et al. AHA. Recommendations for the use of mechanical circulatory support: device strategies and patient selection.2012;126:2653-2667. Ponikowski, P, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. 2016 Eur Heart J. 2016;37:2129–2200. Ambrosy, P, et al. The global health and economic burden of hospitalizations for heart failure. J Am Coll Cardiol. 2014;63:1123 -1133.

Thus ... How ?

ISHLT GUIDELINES

The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary

Co-chairs: David Feldman, MD, PhD;* Salpy V. Pamboukian, MD, MSPH;* Jeffrey J. Teuteberg, MD;* Task Force Chairs (exclusive of co-authors): Emma Birks, MD; Katherine Lietz, MD; Stephanie A. Moore, MD; Jeffrey A. Morgan, MD Contributing Writers (exclusive of co-chairs or chairs): Francisco Arabia, MD; Mary E. Bauman, MScN, NP; Hoger W. Buchholz, MD; Mario Deng, MD; Marc L. Dickstein, MD; Aly El-Banayosy, MD; Tonya Eliot, RN, MSN; Daniel J. Goldstein, MD; Kathleen L. Grady, PhD, APN; Kylie Jones, RN; Katarzyna Hryniewicz, MD; Ranjit John, MD; Annemarie Kaan, MCN, RN; Shimon Kusne, MD; Matthias Loebe, MD, PhD; M. Patricia Massicotte, MHSc, MD; Nader Moazami, MD; Paul Mohacsi, MD; Martha Mooney, MD; Thomas Nelson, MD; Francis Pagani, MD; William Perry, RN; Evgenij V. Potapov, MD; J. Eduardo Rame, MD, MPhil; Stuart D. Russell, MD; Erik N. Sorensen, PhD; Benjamin Sun, MD; and Martin Strueber, MD Independent Reviewers: Abeel A. Mangi, MD; Michael G. Petty, PhD,RN; and Joseph Rogers, MD.

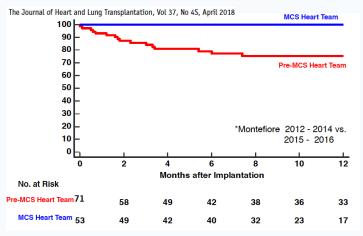
J Heart Lung Transplant 2013;32:157-187

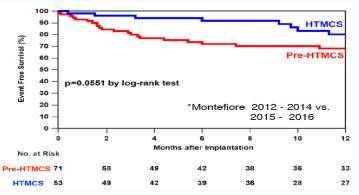
... speak same Language !

Recommendations for the Use of Mechanical Circulatory Support: Ambulatory and Community Patient Care

A Scientific Statement From the American Heart Association

Circulation. 2017;135:00-00.





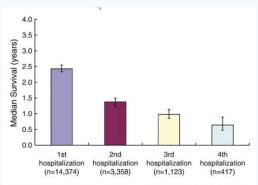
Selection ...

Table 1 Continuous Flow LVAD/BiVAD Implants: 2008 - 2016, n=17633

		Pre-implant Risk Factors for Death	Haz
		Demographics	
	Intermecs Continuous Flow LVAD/BiVAD Implants: 2013 – 2016, n= 10,726	Age ² (older)	1.41
		Female	1.47
		BMI (higher)	1.02
		Blood Type Not O	
	100 Survival by Intermacs Profiles*	White race	
		Clinical Status	
	90 Profiles 4-7 P(overall) < .0001	ICD	1.34
1 a	p(Profile 1 vs. Profiles 2 & 3) < .0001	INTERMACS Profile 1	1.98
	80 Profiles 2 & 3 p(Profile 1 vs. Profiles 4-7) < .0001 p(Profiles 2&3 vs. Profiles 4-7) = .02	INTERMACS Profile 2	1.59
	70-	Intervention within 48 hours IABP	
	Profile 1	Destination Therapy	
-		Non-Cardiac Systems	
2		Peripheral Vascular Disease	
		Pre-COPD	
1	%	Albumin (lower)	0.80
-	- 40	Creatinine (higher)	
	30 Intermacs Profiles n deaths 6 mths 12 mths 36 mths 48 mths	Dialysis	3.29
2.20	Profile 1 1629 477 79% 74% 52% 51%	BUN (higher) (10 unit increase)	1.07
	20 Profiles 2 & 3 7437 1716 88% 82% 61% 53%	Right Heart Dysfunction	
-	Profiles 4-7 1651 376 89% 84% 67% 57%	RVAD in same operation	3.76
	10	Bilirubin (higher) (5 unit increase)	1.28
3	Event: Death – censored at transplant, recovery and device exchange	Surgical Complexities	
	0 6 12 18 24 30 36 42 48 54 60	History of cardiac surgery	1.31
		History of CABG	1.38
	Months post implant	Concommitant Cardiac Surgery	1.53
		Quality of Life – Pre Implant	

_

	Early hazard		Late hazard		
Pre-implant Risk Factors for Death	Hazard Ratio	<i>p</i> -value	Hazard Ratio	<i>p</i> -value	
Demographics					
Age ² (older)	1.41	<.0001	1.16	<.0001	
Female	1.47	<.0001			
BMI (higher)	1.02	<.0001			
Blood Type Not O			0.88	.002	
White race			1.20	.0003	
Clinical Status					
ICD	1.34	.001	1.29	<.0001	
INTERMACS Profile 1	1.98	<.0001			
INTERMACS Profile 2	1.59	<.0001			
Intervention within 48 hours IABP			1.19	.0004	
Destination Therapy			1.22	<.0001	
Non-Cardiac Systems					
Peripheral Vascular Disease			1.28	.004	
Pre-COPD			1.27	.001	
Albumin (lower)	0.80	<.0001			
Creatinine (higher)			1.12	<.0001	
Dialysis	3.29	<.0001			
BUN (higher) (10 unit increase)	1.07	<.0001	1.05	<.0001	
Right Heart Dysfunction					
RVAD in same operation	3.76	<.0001			
Bilirubin (higher) (5 unit increase)	1.28	<.0001			
Surgical Complexities					
History of cardiac surgery	1.31	.004			
History of CABG	1.38	.001			
Concommitant Cardiac Surgery	1.53	<.0001			
Quality of Life – Pre Implant					
Too Sick to complete EQ5D	1.65	<.0001			
Worse Self Care Score (pre-implant)			1.25	<.0001	


Table	1 "I Need Help"—Markers of Advance	ed Heart Failure
I	<u>I</u> r otropes	Previous or ongoing requirement for dobutamine, milrinone, dopamine or levosimendan
N E D	N'HA class/ <u>N</u> atriuretic peptides End-Organ Dysfunction Ejection Fraction Defibrillator shocks	Persisting NYHA Class III or IV and/or persistently high BNP or NT-pro-BNP Worsening renal or liver dysfunction in the setting of heart failure Very low ejection fraction <20% Recurrent appropriate defibrillator shocks
H E L P	Hospitalizations Edema/Escalating diuretics Low blood pressure Prognostic medication	More than 1 hospitalization with heart failure in the last 12 months Persisting fluid overload and/or Increasing diuretic requirement Consistently low BP with systolic <90 to 100 mm Hg Inability to up-titrate (or need to decrease/cease) ACEI, B-blockers, ARNIs or MRAs

ACEI, angiotensin-converting enzyme inhibitor; ARNI, angiotensin-receptor neprilysin inhibitor; BNP, B-type natriuretic peptide; BP, blood pressure; MRA, mineralocorticoid receptor antagonist; NT-ProBNP, N-terminal pro-b-type natriuretic peptide; NYHA New York Heart Association.

Baumwol J. JHLT 36(5): 593-4. May 2017

What is the probability of achieving a good result?

- Assessment phase "Evaluation"
- Team analysis to determine risk benefit / QoL to help guide individual decisions
- Advice and education to the patient / family prior to moving forward

Median survival (50% mortality) and 95% confidence limits in patients with HF after each HF hospitalization.

Setoguchi et al. Am Heart J 2007

In Summary ...

Technology?

It's a resource we should offer ...

Dr. E. Potapov, EACTS 2017, Vienna, Austria

FORMAT

- INTERACTIVE LECTURES
- LIVE-IN-A- BOX CASES
- KEYNOTE PRESENTATIONS

TARGET AUDIENCE

- BIOENGINEERS HEART FAILURE
- CARDIOLOGISTS CARDIAC SURBEONS
- VAD COORDINATORS
- NURSES
- PEREUSION TECHNICIANS
- ANAESTHESIOLOGISTS
- MEDICAL INDUSTRY CARDIAC DEVICES INCLUDING ECMO DEVELOPMENT AND PRODUCTION

Program Chair Antonio Loforte, MD, PhD S. Orsola Hospital Department of Cardiothoracic, Transplantation and Vascular Surgery University of Bologna, Italy

Austria

CONTENT

Focused robust sessions on Adult/

Support systems (bioengineering, biocompatibility, new technologies,

MCS tools and peripherals, surgical strategies, clinical management.

WAD coordinator programs) will take

coming from all over the world.

Additionally, parallel sessions by

the International Consortium of

course (MPV) will be scheduled and directed by worldwide VAD

coordinators.

will be offered

Program Co-Chair

Circulatory Assist Clinicians (ICCAC) with an official proficiency verification

A complete and variegated scientific

program, containing a full spectrum of

exchange and learning opportunities

Francesco Moscato, EngD, PhD

Center for Medical Physics

and Biomedical Engineering

Medical University of Vienna,

place with the presence of prestigious

well-known speakers and discussants

Pediatric temporary (including ECMO)

and long-term Mechanical Circulatory

Via Orefici, 4 – 40124 Bologna (Italy) ph. +39 051 230385 info@noemacongressi.it www.noemacongressi.it

International Society for Mechanical Circulatory Support

for Mechanical Circulatory Support

www.ismcs.org