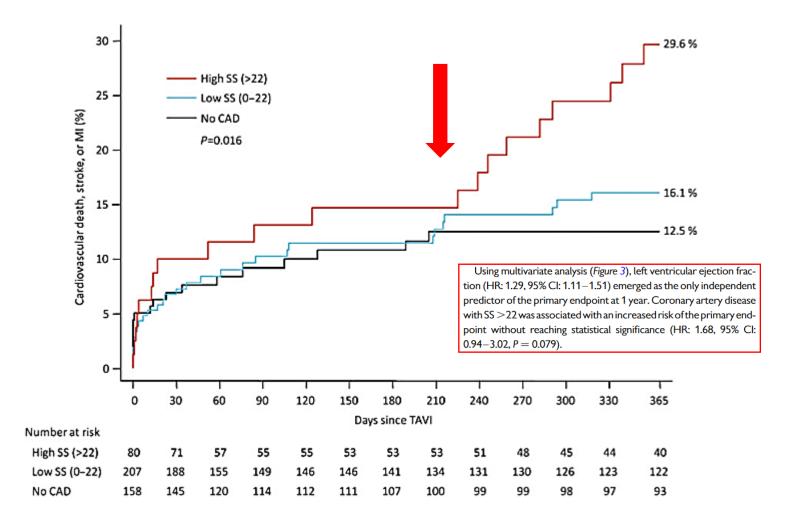


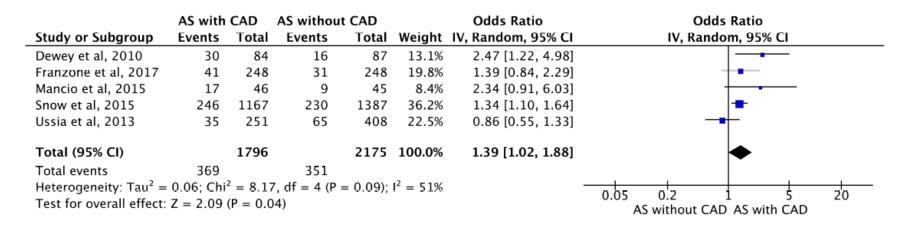
Management of coronary artery disease in patients undergoing transcatheter aortic valve implantation: *look at ischemic burden*

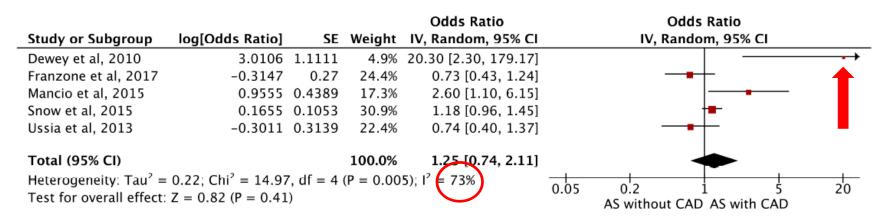
Prof. Giuseppe Biondi Zoccai


Sapienza University of Rome

giuseppe.biondizoccai@uniroma1.it

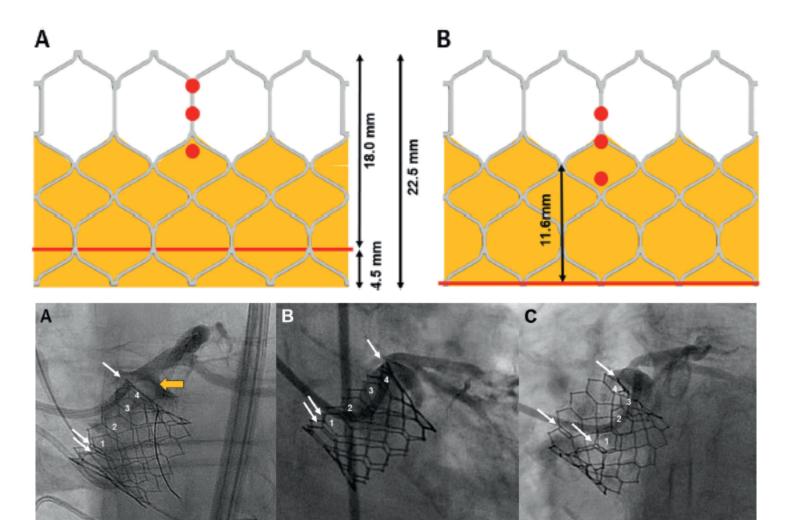
Disclosure


• I have consulted for Abbott Vascular and Bayer


CAD severity and post-TAVI outlook

Stefanini et al, Eur Heart J 2014

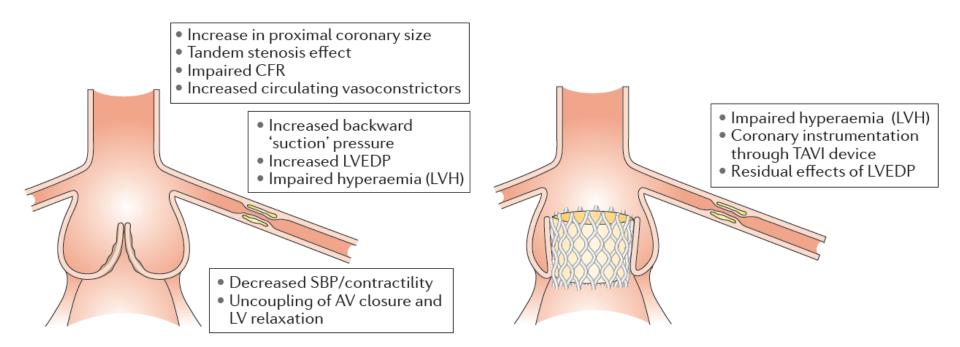
CAD severity and post-TAVI outlook



8 studies missing: selective reporting?

D'Ascenzo et al, EuroIntervention 2018

PCI after TAVI


Yudi et al, J Am Coll Cardiol 2018

One-vs two-stage PCI and TAVI

Study	Conrad et al ^[13]	Wenaweser et al ^[14]	Aktug et al ^[15]	Griese et al ^[3]
30-d mortality				
Concomitant PCI+TAVR	2/7	4/36	0/8	3/17
Staged PCI+TAVR	0/21	2/23	7/49	7/48
Renal failure				
Concomitant PCI+TAVR	2/7	1/36	NR	1/17
Staged PCI+TAVR	0/21	0/23	NR	2/48
Life-threatening bleeding				
Concomitant PCI+TAVR	0/7	2/36	NR	1/17
Staged PCI+TAVR	0/21	3/23	NR	5/48
Periprocedural myocardial infarction				
Concomitant PCI+TAVR	0/7	0/36	NR	1/17
Staged PCI+TAVR	0/21	0/23	NR	2/48
Major stroke				
Concomitant PCI+TAVR	0/7	2/36	NR	0/17
Staged PCI+TAVR	0/21	0/23	NR	0/48

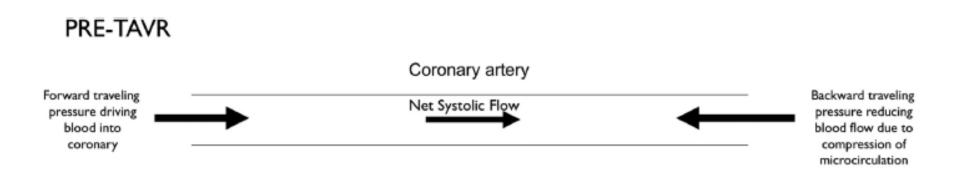
PCI=percutaneous coronary intervention, TAVR=transcatheter aortic valve replacement.

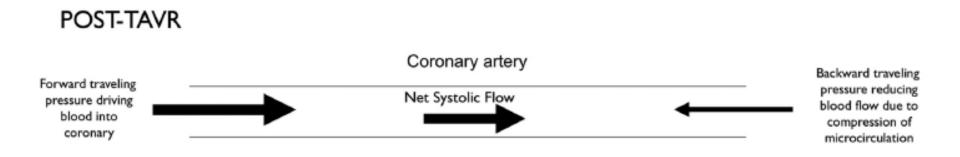
Confounding functional assessment

Danson et al, Nat Rev Cardiol 2016

Competing scenarios

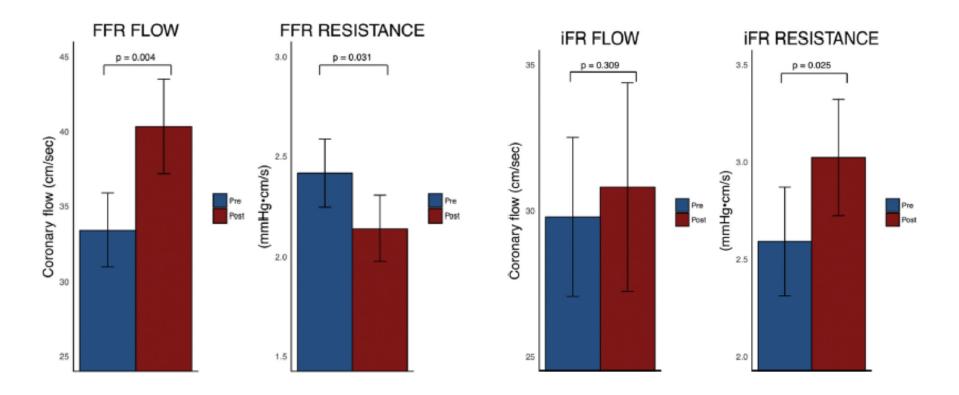
- Timing:
 - Before vs after TAVI
- CAD type:
 - Atherothrombotic vs stable
 - Symptomatic vs asymptomatic
 - Functionally vs anatomically significant

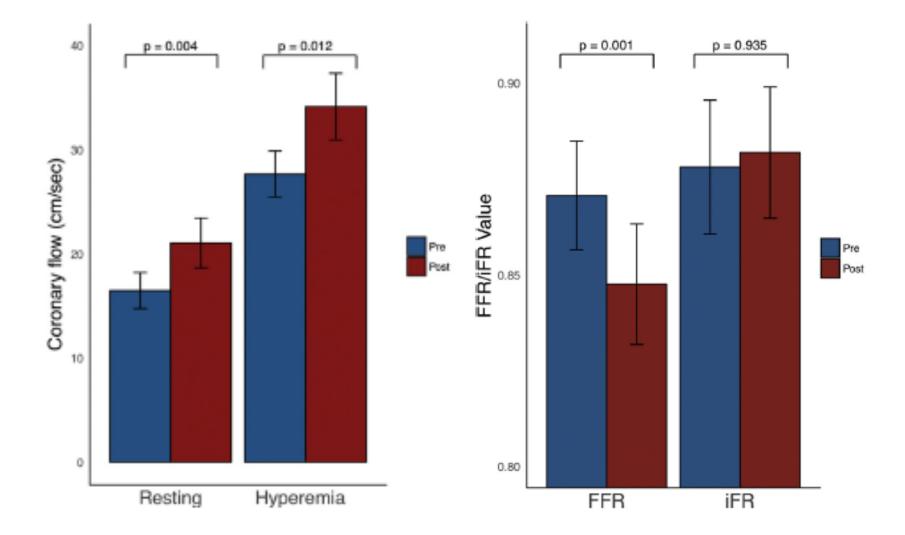

• Lesion subset:


- Simple vs complex
- Low risk vs high risk
- Proximal vs distal
- Stenotic vs occluded

Anatomic vs functional complexity

- Scores:
 - SYNTAX vs MIS vs others
- Timing:
 - Baseline vs residual
- Anatomic definition:
 - Diameter stenosis vs lumen area
- Functional definition:
 - Wall motion vs perfusion vs CFR vs FFR vs iFR


FFR vs iFR


Ahmad et al, JACC Cardiovasc Interv 2018

FFR vs iFR

Ahmad et al, JACC Cardiovasc Interv 2018

FFR vs iFR

Ahmad et al, JACC Cardiovasc Interv 2018

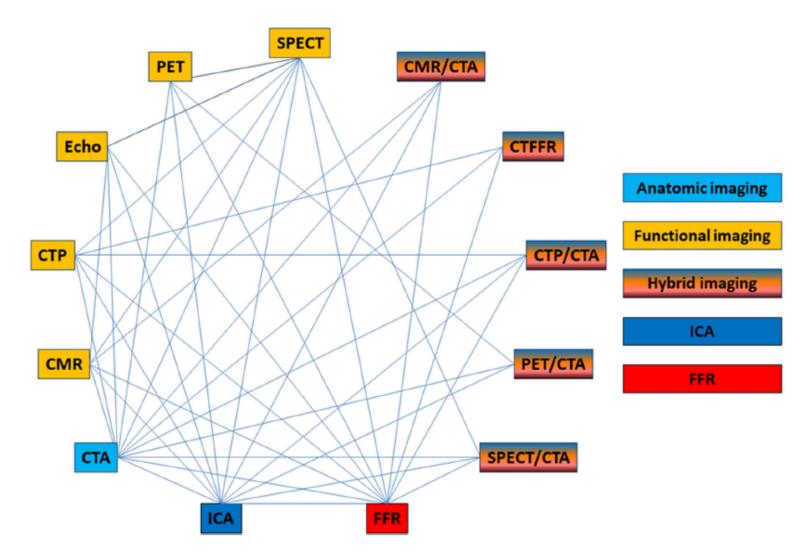

Non-invasive functional testing

Table 5 | Sensitivity and specificity of noninvasive stress testing for CAD

Study	Patients (n)	Stressor	lmaging modality	Comparator modality	Sensitivity for CAD (%)	Specificity for CAD (%)
Cremer et al. (2014) ⁶⁹	50	Regadenoson	PET	Revascularization	91	—
Burgstahler <i>et al</i> . (2008) ⁷⁰	23	Adenosine	MRI	Angiography (stenosis >70%)	100	80
Patsilnakos et al. (2004)71	241	Adenosine	SPECT	Angiography (stenosis >70%)	88.6	72.5
Demirkol <i>et al</i> . (2002) ⁷²	390	Dipyridamole	SPECT	Angiography (stenosis >50%)	100	71
Patsilinakos <i>et al</i> . (1999) ⁷³	50	Adenosine	SPECT and TTE	Angiography (stenosis >70%)	• SPECT: 85 • TTE: 85	• SPECT: 76.7 • TTE: 96.7

CAD, coronary artery disease; MRI, magnetic resonance imaging; PET, positron emission tomography; SPECT, single-photon emission computed tomography; TAVI, transcatheter aortic valve implantation; TTE, transthoracic echocardiography.

Hybrid imaging for CAD

Biondi-Zoccai et al, J Nucl Cardiol 2018

Hybrid imaging for CAD

Table 3. Studies and patients included distinguishing index and reference tests

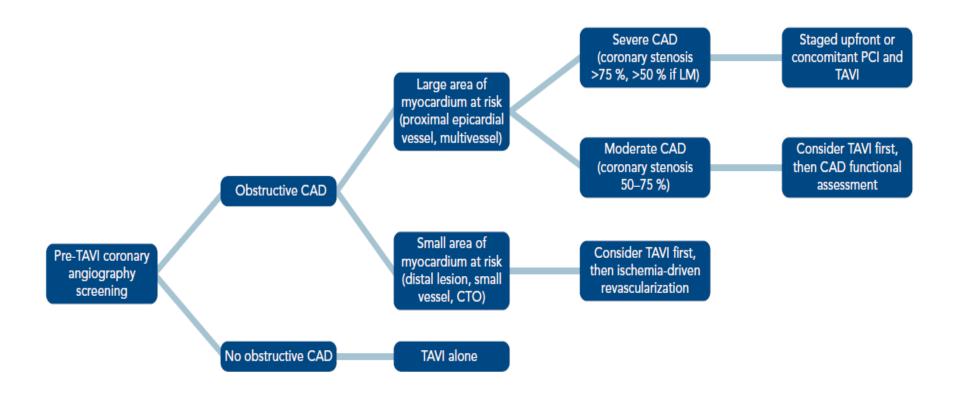
			Reference test			
			Invasive coronary angiography		Invasive fractional flow reserve	
Index test	Years	Sample size	Studies (<i>N</i> = 654)	Patients (71,712)	Studies (<i>N</i> = 96)	Patients (8764)
Anatomic imaging						
Computed tomography angiography	2010 (1998-2016)	77 (20-1372)	132 (20.3%)	14,592	20 (20.8%)	2157
Functional imaging						
Cardiac magnetic resonance	2009 (1999-2018)	66 (16-823)	93 (14.3%)	10,128	17 (17.7%	1531
Computed tomography perfusion	2013 (2009-2015)	70 (14-101)	5 (0.8%)	250	9 (9.4%)	562
Positron emission tomography	2006 (1988-2013)	53 (19-202)	18 (2.8%)	1144	1 (1.0%)	120
Single photon emission computed tomography	2000 (1982-2018)	76 (5-1853)	233 (35.9%)	28,841	21 (21.9%)	1811
Stress echocardiography	1997 (1988-2015)	70 (7-430)	151 (23.3%)	15,184	6 (6.3%)	373
Hybrid imaging						
Cardiac magnetic resonance/computed tomography angiography	2010 (2010-2013)	72 (47-88)	2 (0.3%)	119	1 (1.0%)	88
Computed tomography perfusion/computed tomography angiography	2013 (2009-2015)	65 (20-101)	8 (1.2%)	396	7 (7.3%)	480
Computed tomography-fractional flow reserve	2014 (2011-2016)	85 (7-254)	0	0	11 (1.5%)	1193
Positron emission tomography/computed tomography angiography	2012 (2009-2013)	74 (33-120)	2 (0.3%)	77	2 (2.1%)	224
Single photon emission computed tomography/ Computed tomography angiography	2013 (2009-2015)	134 (54-225)	5 (0.8%)	592	1 (1.0%)	225

Reported as median (minimum-maximum), sum, or count (%)

Hybrid imaging for CAD

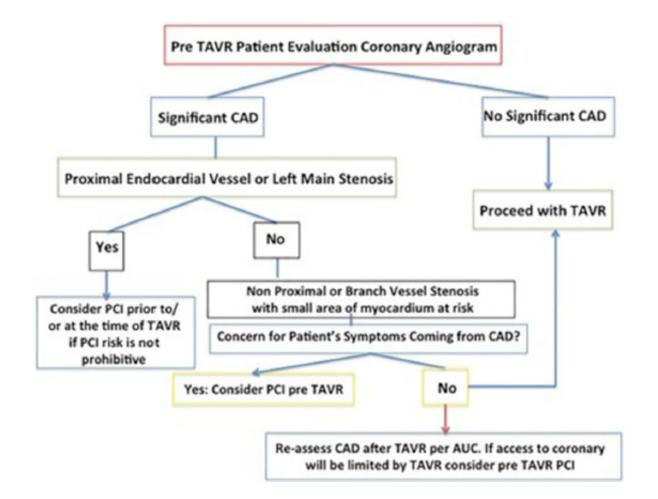
Table 4. Results of pairwise meta-analysis

Reference test	Index test	Sensitivity	Specificity	+ LR	— LR	DOR	AUC of SROC
Invasive coronary	Anatomic imaging	0.95 (0.94-0.96)	0.83 (0.81-0.85)	5.7 (5.0-6.5)	0.06 (0.05-0.07)	94.7 (73.1-122.8)	0.99 (0.99-0.99)
angiography	Functional imaging	0.83 (0.82-0.84)	0.76 (0.23-0.26)	3.5 (3.3-3.6)	0.22 (0.21-0.23)	15.8 (14.5-17.2)	0.90 (0.90-0.90)
	Hybrid imaging	0.90 (0.85-0.93)	0.89 (0.83-0.92)	7.8 (5.3-11.9)	0.11 (0.08-0.17)	68.8 (37.9-124.8)	0.98 (0.97-0.99)
Invasive fractional	Anatomic imaging	0.94 (0.90-0.96)	0.46 (0.38-0.55)	1.7 (1.5-2.1)	0.14 (0.09-0.22)	12.2 (7.0-21.4)	0.93 (0.88-0.98)
flow reserve	Functional imaging	0.78 (0.74-0.82)	0.80 (0.76-0.84)	4.0 (3.3-4.8)	0.27 (0.22-0.32)	14.9 (11.0-20.2)	0.88 (0.86-0.91)
	Hybrid imaging	0.87 (0.83-0.90)	0.82 (0.76-0.87)	4.9 (3.6-6.9)	0.16 (0.12-0.20)	31.0 (19.6-49.3)	0.94 (0.92-0.96)


+ LR, positive likelihood ratio; - LR, negative likelihood ratio; AUC, area under the curve; DOR, diagnostic odds ratio; SROC, summary receiver-operating curve

Reference test	Index test	Sensitivity	Specificity	+ LR	- LR
Invasive coronary	Anatomic imaging	0.96 (0.95-0.97)	0.83 (0.81-0.85)	12.3 (8.7-15.9)	0.16 (0.05-0.27)
angiography	Functional imaging	0.84 (0.83-0.85)	0.77 (0.76-0.78)	6.1 (5.4-6.7)	0.32 (0.29-0.35)
	Hybrid imaging	0.91 (0.89-0.93)	0.87 (0.84-0.90)	13.6 (8.3-19.0)	0.17 (0-0.39)
Invasive fractional	Anatomic imaging	0.95 (0.93-0.97)	0.46 (0.38-0.55)	2.0 (1.6-2.5)	0.38 (0.16-0.61)
flow reserve	Functional imaging	0.79 (0.75-0.83)	0.81 (0.77-0.85)	6.3 (4.5-8.2)	0.42 (0.33-0.50)
	Hybrid imaging		0.82 (0.77-0.87)		0.27 (0.12-0.42)

Table 5. Results of multivariate meta-analysis


+ LR, positive likelihood ratio; - LR, negative likelihood ratio

Algorithm for CAD in AS

Cao et al, Interv Cardiol Rev 2018

Another algorithm for CAD in AS

Upcoming RCT

- Title: PercutAneous Coronary inTerventIon prior to transcatheter aortic VAlve implantaTION: a randomised controlled trial (ACTIVATION)
- Principal investigator: Martyn Thomas
- Primary endpoint: Death or rehospitalization at 1 year
- Sample: 310 patients
- Methods: 1:1 randomisation of pre-TAVI PCI to no pre-TAVI PCI; coronary angiography will be used to identify significant CAD defined as ≥1 lesion of ≥70% in ≥1 epicardial coronary artery; patients without significant CAD will be enrolled into Registry 1; patients whose CAD is not suitable for percutaneous coronary intervention (PCI) will be enrolled into Registry 2
- Years: 2011-2015

Alternatives to EBM

- Eminence based medicine
- Vehemence based medicine
- Eloquence based medicine
- Providence based medicine
- Diffidence based medicine
- Nervousness based medicine
- Confidence based medicine

A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

Alternatives to EBM

Basis of clinical practice

Basis for clinical decisions	Marker	Measuring device	Unit of measurement
Evidence	Randomised controlled trial	Meta-analysis	Odds ratio
Eminence	Radiance of white hair	Luminometer	Optical density
Vehemence	Level of stridency	Audiometer	Decibels
Eloquence (or elegance)	Smoothness of tongue or nap of suit	Teflometer	Adhesin score
Providence	Level of religious fervour	Sextant to measure angle of genuflection	International units of piety
Diffidence	Level of gloom	Nihilometer	Sighs
Nervousness	Litigation phobia level	Every conceivable test	Bank balance
Confidence*	Bravado	Sweat test	No sweat

↓* Applies only to surgeons.

Conclusions

- The management of patients scheduled for TAVI with non-invasive anatomic evidence of CAD remains uncertain
- Awaiting for randomized trials, a cooperative multidisciplinary approach is recommended
- On top of integrating different (sub)specialty expertises, it is paramount to combine functional and anatomic assessment of CAD
- Eventually, feasibility and prognosis remain the key factors in decision making

Many thanks for your attention!

For any query: giuseppe.biondizoccai@uniroma1.it