

GIORNATE CARDIOLOGICHE TORINESI

Reopen the vessel, it is heart failure!

Jacopo Oreglia Milano

- 55 y-o man
- Normal rest ECG
- hypokinesia of anterior wall, apex and anterior IV septum, EF 30%
- Elective coronary angiogram shows critical stenosis of the proximal LAD
- Revascularization or medical treatment?

95% prox LAD stenosis

guiding catheter
guidewire
balloons
stent
Procedural time 20 minutes

- 55 y-o man
- Normal rest ECG
- hypokinesia of anterior wall, apex and anterior IV septum, EF 30%
- Elective coronary angiogram shows critical stenosis of the proximal LAD
- Revascularization or medical treatment?

Proximal LAD CTO

- 55 y-o man
- Normal rest ECG
- hypokinesia of anterior wall, apex and anterior IV septum, EF 30%
- Elective coronary angiogram shows critical stenosis of the proximal LAD
- Revascularization or medical treatment?

Clinical case # 2

- 55 y-o man
- Normal rest ECG
- hypokinesia of anterior wall, apex and anterior IV septum, EF 30%
- Elective coronary angiogram shows critical stenosis of the proximal LAD
- Revascularization or medical treatment?

The twins paradox

PCI, for sure!

Is there ischemia? How are the symptoms? Maybe medical treatment? Or CABG? PCI, yes, but complex....

No difference

Difference

- 1 guiding catheter
- 1 workhorse guidewire
- 2 balloons
- 1 stent
- Procedural time 20 minutes

- 2 guiding catheter
- 4 dedicated guidewires
- 2 microcatheters
- 4 balloons
- 1 stent
- Procedural time 130 minutes

Reasons to reopen a chronically occluded coronary artery

- Symptoms relief
- Systolic function improvement
- Possible prognostic impact

The indications for the case do not change just because the lesion is "harder to treat"

Impact of Chronic Total Occlusion of the Coronary Artery on Long-Term Prognosis in Patients With Ischemic Systolic Heart Failure

Insights From the COMMIT-HF Registry

JACC Intv 2016;9:1790-7

Impact of Chronic Total Occlusion of the Coronary Artery on Long-Term Prognosis in Patients With Ischemic Systolic Heart Failure Insights From the COMMIT-HF Registry

JACC Intv 2016;9:1790-7

MESSAGE # 1

Heart Failure patients with a CTO have worse prognosis than heart failure patients without CTO

Marker of disease
Cause of bad prognosis?
severity?

RESEARCH

Benefits of chronic total coronary occlusion percutaneous intervention in patients with heart failure and reduced ejection fraction: insights from a cardiovascular magnetic resonance study

Journal of Cardiovascular Magnetic Resonance 2016; 18:78

Journal of Cardiovascular Magnetic Resonance 2016; 18:78

MESSAGE # 2

Heart Failure patients with a CTO improve their clinical condition (lower BNP, less symptoms) if they have their CTO reopened

- Marker of disease severity?
- Cause of bad prognosis?

Percutaneous Coronary Intervention of Chronic Total Occlusions in Patients With Low Left Ventricular Ejection Fraction

J Am Coll Cardiol Intv 2017;10:2158–70

Meta-analysis of the impact of successful chronic total occlusion percutaneous coronary intervention on left ventricular systolic function and reverse remodeling

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI Bucciarelli et al 2016 67 12 50 62 13 50 4.8% 5.00 [0.10, 9.90] • cardona et 2016 37.7 8 29 31.3 7.4 29 6.4% 6.40 [2.43, 10.37] • Chadid et al 2015 51.5 10.8 43 49.1 10.4 43 5.4% 2.40 [-2.08, 6.88] • chen et al 2009 54 8 132 45 11 132 11.5% 9.00 [6.68, 11.32] • choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] • Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] • El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87,										
Bucciarelli et al 2016 67 12 50 62 13 50 4.8% 5.00 [0.10, 9.90] cardona et 2016 37.7 8 29 31.3 7.4 29 6.4% 6.40 [2.43, 10.37] Chadid et al 2015 51.5 10.8 43 49.1 10.4 43 5.4% 2.40 [-2.08, 6.88] chen et al 2009 54 8 132 45 11 132 11.5% 9.00 [6.68, 11.32] choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7.74, 16.68]										
cardona et 2016 37.7 8 29 31.3 7.4 29 6.4% 6.40 [2.43, 10.37] Chadid et al 2015 51.5 10.8 43 49.1 10.4 43 5.4% 2.40 [-2.08, 6.88] chen et al 2009 54 8 132 45 11 132 11.5% 9.00 [6.68, 11.32] choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7.74, 16.68]										
Chadid et al 2015 51.5 10.8 43 49.1 10.4 43 5.4% 2.40 [-2.08, 6.88] chen et al 2009 54 8 132 45 11 132 11.5% 9.00 [6.68, 11.32] choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7.74, 16.68]										
chen et al 2009 54 8 132 45 11 132 11.5% 9.00 [6.68, 11.32] choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7, 74, 16.68]										
choi et al 2017 51.6 12.5 305 47.8 12.3 305 12.9% 3.80 [1.83, 5.77] Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.66 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7, 74, 16.68]										
Chung et al 2003 57.44 17.93 75 53.28 16.004 75 4.1% 4.16 [-1.28, 9.60] El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17] Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 [-7,74, 16.68]										
El shafey et al 2015 54.4 5.52 37 52.75 5.56 37 10.7% 1.65 [-0.87, 4.17]										
Fiocchi et al 2009 54.15 16.84 14 49.68 16.13 14 1.0% 4.47 I-7.74, 16.68]										
V.07, 0.07]										
Pujada 2.72, 8.72]										
Roifman et al 2013 54.3 10.7 19 50.3 12.6 19 2.4% 4.00 [-3.43, 11.43]										
Sun et al 2012 51.2 7.638 99 46.8 9.34 99 11.2% 4.40 [2.02, 6.78] *										
Valenti et al 2008 46.5 11.3 290 42.2 12.1 290 13.2% 4.30 [2.39, 6.21]										
Total (95% CI) 1248 1248 100.0% 4.31 [3.08, 5.55]										
Heterogeneity: Tau ² = 2.05; Chi ² = 23.74, df = 14 (P = 0.05); l ² = 41%										
Test for overall effect: Z = 6.85 (P < 0.00001) -100 -50 0 100										

J Interv Cardiol. 2018;31:562–571

MESSAGE # 3

Heart Failure patients with a CTO improve their regional kinesis and the global EF if they have their CTO reopened

• Marker of disease severity?

Comparison of Benefit of Successful Percutaneous Coronary Intervention for Chronic Total Occlusion in Patients With Versus Without Reduced (≤40%) Left Ventricular Ejection Fraction

Procedural failure	73	57	53	37	34	30	Procedural failure	73	51	48	33	29	26
Procedural success	275	246	219	155	133	114	Procedural success	275	223	181	129	115	100
LVEF > 40%							LVEF > 40%						
Procedural failure	267	254	238	178	164	154	Procedural failure	267	210	186	138	128	124
Procedural success	1387	1353	1225	849	774	719	Procedural success	1387	1269	1103	800	741	697

Am J Cardiol 2017;120:1780–1786

MESSAGE # 4

Heart Failure patients with a CTO survive longer if they have their CTO reopened

 Marker of disease severity?

• Cause of bad prognosis?

MESSAGE # 5

If the CTO is a cause of bad prognosis its revascularization should be a treatment target

How to identify responders?

Viable "normal" myocardium

At risk myocardium

(pressure overload, ischemia, diabetes, etc)

DV myocyte

(mitochondrial damage, abnl Ca²⁺ handling, upreg of fetal genes, myocyte hypertrophy)

DV myocardium

(ECM deposition, interstitial fibrosis, dysfunctional microcirculation)

Nonviable myocardium

Potentially reversible process, "myocardial recovery"

Viability is the answer

Myocardial Viability Testing to Guide Coronary Revascularization

Adrián I. Löffler, MD^a, Christopher M. Kramer, MD^{a,b,*}

Intervent Cardiol Clin 2018; 7: 355–365

And what about ischemia?

Hachamovitch / Circulation. 2003;107:2900-2906.

CTO PCI: Reduction of ischemic burden

301 patients undergoing SPECT/PET before and after CTO recanalization

- The mean reduction in myocardial ischemic burden after CTO PCI was 6.2% ± 6.0%
- ischemic burden > 12.5% predictive of improvement in myocardial ischemic burden following CTO PCI
- Ischemic burden < 6.25% predictive of worsening ischemia following CTO PCI
- patients with 5% reduction in ischemic burden post-PCI experienced fewer clinical events, in particular death and TVR

At what cost?

Complications? Success rate?

Complications

TABLE 4 Periprocedural Complications									
	All CTO PCI (N = 839)	LVEF ≥50% CTO PCI (n = 552) (Group 1)	LVEF 35%-50% CTO PCI (n = 215) (Group 2)	LVEF ≤35% CTO PCI (n = 72) (Group 3)					
Coronary perforation without tamponade	21 (2.5)	17 (4.5)	6 (2.8)	3 (4.2)					
Coronary perforation with tamponade	13 (1.5)	8 (1.4)	5 (2.3)	0					
Need for emergency CABG	1 (0.1)	1 (0.2)	0	0					
Death	0	0	0	0					
Non-Q-wave MI	7 (0.8)	3 (0.5)	4 (1.9)	0					
Q-wave MI	2 (0.2)	2 (0.4)	0	0					
Stent thrombosis	2 (0.2)	1 (0.2)	1 (0.5)	0					
TVR	4 (0.5)	2 (0.4)	2 (0.9)	0					
Stroke	0	0	0	0					
Major bleeding	3 (0.4)	2 (0.4)	1 (0.5)	0					

J Am Coll Cardiol Intv 2017;10:2158–70

J Am Coll Cardiol Intv 2017;10:2158–70

Conclusions

- It was demonstrated that the presence of the chronic total occlusion of a coronary artery in patients with systolic ischemic heart failure resulted in a poorer long-term prognosis.
- The revascularization of coronary chronic total occlusions seems to be a promising treatment strategy in terms of long-term prognosis improvement in patients with heart failure.
- However, the strategy requires verification in further, well-designed and powered randomized trials.
- Viability is necessary to improve symptoms, systolic function and prognosis
- Complications and success rate in CTO PCI in patients with low EF are not significantly different from those recorded in normal EF patients

CTO PCI in heart failure (with viability)

