

University of Pavia - School of Medicine Foundation I.R.C.C.S. Policlinico "San Matteo" Cardiac Surgery - Intrathoracic Transplantation - Pulmonary Hypertension Pavia, Italy

Prof. Andrea M. D'Armini, M.D.

BEST PRACTICE FOR DIAGNOSIS AND TREATMENT OF CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION

FINANCIAL DISCLOSURE

Last three years

Actelion Pharmaceuticals Ltd Bayer HealthCare Merk Sharp Dohme

REFERENCE

Terapia chirurgica dell'ipertensione polmonare cronica tromboembolica mediante endoarteriectomia polmonare

Andrea Maria D'Armini, Giorgio Zanotti, Matteo Pozzi, Salvatore Nicolardi, Corrado Tramontin, Vito G. Ruggieri, Marco Morsolini, Fabrizio Tancredi, Cristian Monterosso, Mario Viganò, a nome del Pavia Pulmonary Endarterectomy Study Group (vedi Appendice)

Cattedra e Divisione di Cardiochirurgia, Università degli Studi di Pavia, IRCCS Policlinico San Matteo, Pavia

(G Ital Cardiol 2006; 7 (7): 454-463)

Tabella 2. Esami diagnostici di primo livello.						
Test diagnostico	Razionale	Quadro tipico				
ECG	Evidenziare dilatazione/sovraccarico ventricolare	Precoce: solitamente normale Tardivo: segni di dilatazione/ipertrofia VD e dilatazione AD				
Rx torace	Visualizzare l'ombra cardiaca e gli ambiti polmonari (parenchimale/vascolare)	Precoce: solitamente normale Tardivo: area avascolare, dilatazione dell'arte- ria polmonare, trama vascolare irregolare (au- mentato flusso bronchiale) e asimmetrica, esiti cicatriziali pleurici				
Ecocardiogramma	Stimare le pressioni arteriose polmonari, valutare anatomia e funzione delle principali strutture cardiache, ricercare la presenza di shunt intracardiaci	Dilatazione/disfunzione delle camere cardiache destre, insufficienza tricuspidale destra, aumen- to delle pressioni polmonari, movimento para- dosso del SIV, disfunzione VS, possibile comu- nicazione interatriale (FOP)				

AD = atrio destro; ECG = elettrocardiogramma; FOP = forame ovale pervio; Rx = radiografia; SIV = setto interventricolare; VD = ventricolo destro; VS = ventricolo sinistro.

(G Ital Cardiol 2006; 7 (7): 454-463)

Tabella 3. Esami diagnostici di secondo livello.					
Test diagnostico	Razionale	Quadro tipico			
Scintigrafia V/P	Diagnosi differenziale IPCTE vs IPI	Uno o più segmenti polmonari con "mismatch" ventilo-perfusorio			
Cateterismo cardiaco destro	Misurare le pressioni in AP e IC, calcolare le RVP	Pressioni polmonari prossime a valori sistemici o sovrasistemiche, IC < 2.0 $1/\text{min/m}^2$ e RVP notevolmente elevate (spesso > 1000 dynes*s*cm ⁻⁵)			
PFR/EGA	Escludere/valutare cause parenchimali di IP, valutare la funzione respiratoria	Non anomalie significative/lieve quadro restrit tivo (dovuto a precedenti infarti polmonari), ipossiemia, alcalosi respiratoria compensato ria, ridotta DL _{co}			

AP = arteria polmonare; DL_{co} = capacità polmonare di diffusione per il monossido di carbonio; EGA = emogasanalisi; IC = indice cardiaco; IP = ipertensione polmonare; IPCTE = ipertensione polmonare cronica tromboembolica; IPI = ipertensione polmonare idiopatica; PFR = prove di funzionalità respiratoria; RVP = resistenze vascolari polmonari; V/P = ventilo-perfusoria.

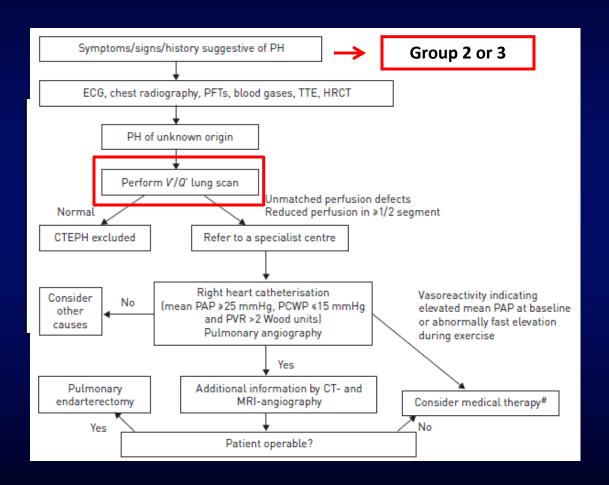
(G Ital Cardiol 2006; 7 (7): 454-463)

Tabella 4	Esami	diagnostici	di	terzo	livello.	
-----------	-------	-------------	----	-------	----------	--

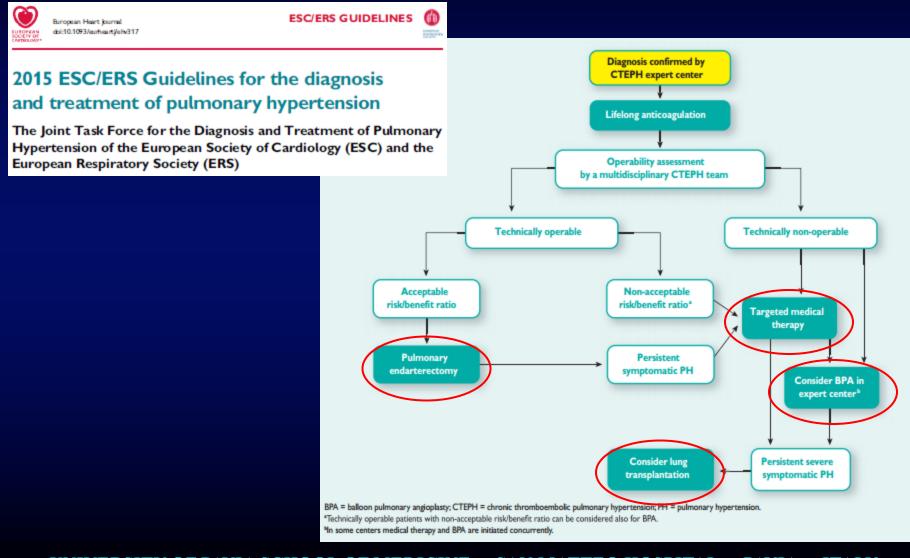
Test diagnostico	Razionale	Quadro tipico
Angiografia polmonare	Valutare l'anatomia arteriosa polmonare, l'estensione/localizzazione degli emboli cronici (per porre diagnosi, valutare l'elegibilità all'intervento e prevedere l'outcome operatorio)	Irregolarità intimali, difetti "a tasca", bande o "reti" intravascolari, riduzione repentina del calibro vascolare o amputazione dello stesso
TC torace	Fase vascolare: identica a quella angiografica Fase parenchimale/mediastinica: valutare il parenchima polmonare, escludere cause estrinseche di IP	Quadro vascolare: identico a quello angiografico Quadro parenchimale: perfusione a mosai- co ed esiti cicatriziali subpleurici Quadro mediastinico: dilatazione delle arte rie bronchiali

IP = ipertensione polmonare; TC = tomografia computerizzata.

(G Ital Cardiol 2006; 7 (7): 454-463)



ESC/ERS GUIDELINES


2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)


European Respiratory Soci		
I. Pulmonary arterial hypertension	3. Pulmonary hypertension due to lung diseases and/or hypoxia	
 1.1 Idiopathic 1.2 Heritable 1.2.1 BMPR2 mutation 1.2.2 Other mutations 1.3 Drugs and toxins induced 1.4 Associated with: 4.1 Connective tissue disease 4.2 Human immunodeficiency virus (HIV) infection 4.3 Portal hypertension 4.4 Congenital heart disease (Table 6) 	 3.1 Chronic obstructive pulmonary disease 3.2 Interstitial lung disease 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 3.4 Sleep-disordered breathing 3.5 Alveolar hypoventilation disorders 3.6 Chronic exposure to high altitude 3.7 Developmental lung diseases (Web Table III) 	
1.4.5 Schistosomiasis	4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions	%
I'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis	4.1 Chronic thromboembolic pulmonary hypertension 4.2 Other pulmonary artery obstructions	
I'.1 Idiopathic I'.2 Heritable I'.2.1 EIF2AK4 mutation I'.2.2 Other mutations I'.3 Drugs, toxins and radiation induced	4.2.1 Angiosarcoma 4.2.2 Other Intravascular tumors 4.2.3 Arteritis 4.2.4 Congenital pulmonary arteries stenoses 4.2.5 Parasites (hydatidosis)	
I'.4 Associated with: I'.4.1 Connective tissue disease I'.4.2 HIV infection	5. Pulmonary hypertension with unclear and/or multifactorial mechanisms	
I". Persistent pulmonary hypertension of the newborn	5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy	
2. Pulmonary hypertension due to left heart disease	5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis,	
 2.1 Left ventricular systolic dysfunction 2.2 Left ventricular diastolic dysfunction 2.3 Valvular disease 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 2.5 Congenital /acquired pulmonary velns stenosis 	 lymphangioleiomyomatosis 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: pulmonary tumoral thrombothic microangiopathy, fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension 	

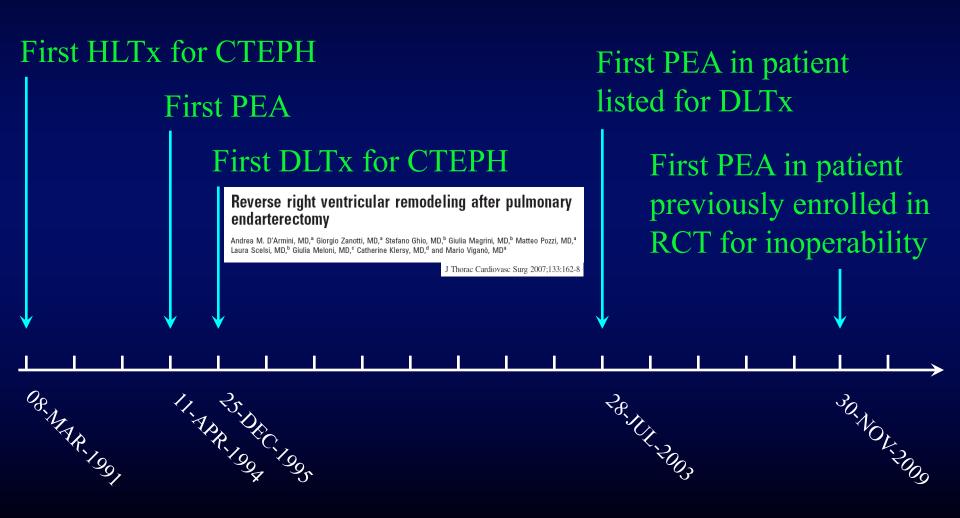
GUIDELINES FOR CTEPH

PATIENTS' REFERRAL

FROM 4/1994 TO 10/2018 897 PEAs

Pts coming from outside Italy: 11				
- Albania	3			
- Greece	1			
- Israel	1			
- Kosovo	1			
- Romania	2			
- Russia	1			
- Uganda	1			
- U.S.A.	1			

PATIENTS' REFERRAL

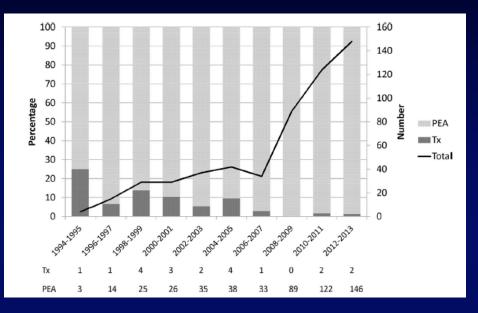


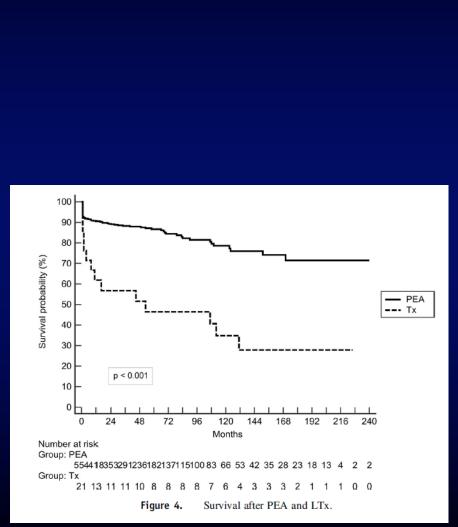
FROM 2009 TO 2013 → 322 PEAs PTS / 10⁶ / Year POPULATION

≤ 1 pt / 10⁶ / Year
 1 - 3 pts / 10⁶ / Year
 ≥ 3 pts / 10⁶ / Year

Update date population at 01/01/2014 (ISTAT)

SURGICAL TREATMENT OF CTEPH PAVIA EXPERIENCE


SURGICAL TREATMENT OF CTEPH


Chronic thromboembolic pulmonary hypertension: From transplantation to distal pulmonary endarterectomy

Andrea M. D'Armini, MD,^a Marco Morsolini, MD, PhD,^b Gabriella Mattiucci, MD,^b Valentina Grazioli, MD,^a Maurizio Pin, MD,^a Antonio Sciortino, MD,^a Eloisa Arbustini, MD,^c Claudio Goggi, MD,^a and Mario Viganò, MD^a The Journal of Heart and Lung Transplantation

J Heart Lung Transplant. 2016 Jun;35(6):827-31

SURGICAL TREATMENT OF CTEPH

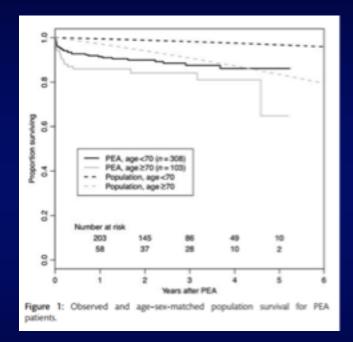
CHARACTERISTICS

Optimal candidate

- Age < 70 years
- NYHA II-III
- PVR < 800
- Proximal CTE lesions
- Plenty CTE occlusions
- Absence of comorbidities

Poor candidate

- Age \geq 70 years
- NYHA IV
- PVR > 1200
- Distal CTE lesions
- Scarce CTE occlusions
- Presence of comorbilities


CHARACTERISTICS

- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities

European Journal of Cardio-Thoracic Surgery 41 (2012) e154-e160 doi:10.1093/ejcts/ezs188 ORIGINAL ARTICLE

Pulmonary endarterectomy: outcomes in patients aged >70'

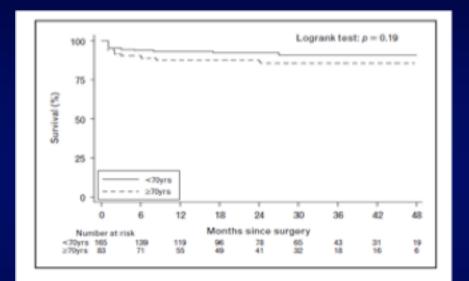
Marius Berman¹, Gillian Hardman³, Linda Sharples¹, Joanna Pepke-Zaba³, Karen Sheares⁴, Steven Tsui⁴, John Dunning⁴ and David P. Jenkins^{4*}

Eur J Cardiothorac Surg. 2012 Jun;41(6):e154-60

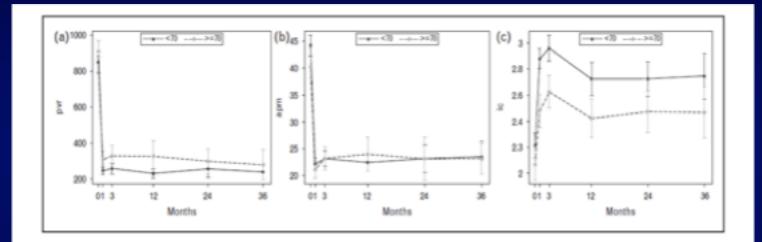
CONCLUSION

In the present study, septuagenarians showed a very good medium-term survival following PEA. PEA surgery has an acceptable safety profile, and the risk in the patients aged ≥70 is only slightly greater than that of the younger patients, but there is a greater resource use for older patients due to longer ICU and hospital stays. Advanced age should be taken into consideration when assessing suitability for PEA, but is not a contraindication to surgery.

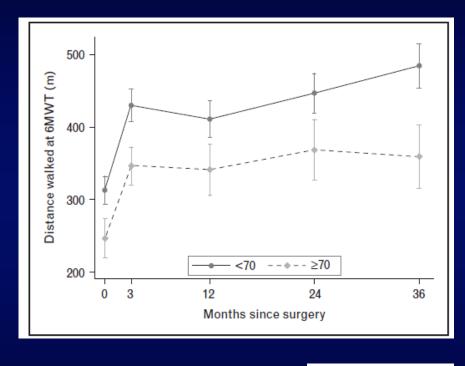
Eur J Cardiothorac Surg. 2012 Jun;41(6):e154-60


Original article

Pulmonary endarterectomy in the elderly: safety, efficacy and risk factors


Nicola Vistarini^a, Marco Morsolini^a, Catherine Klersy^b, Gabriella Mattiucci^a, Valentina Grazioli^a, Maurizio Pin^a, Stefano Ghio^o and Andrea Maria D'Armini^a

J Cardiovasc Med 2016, 17:144-151

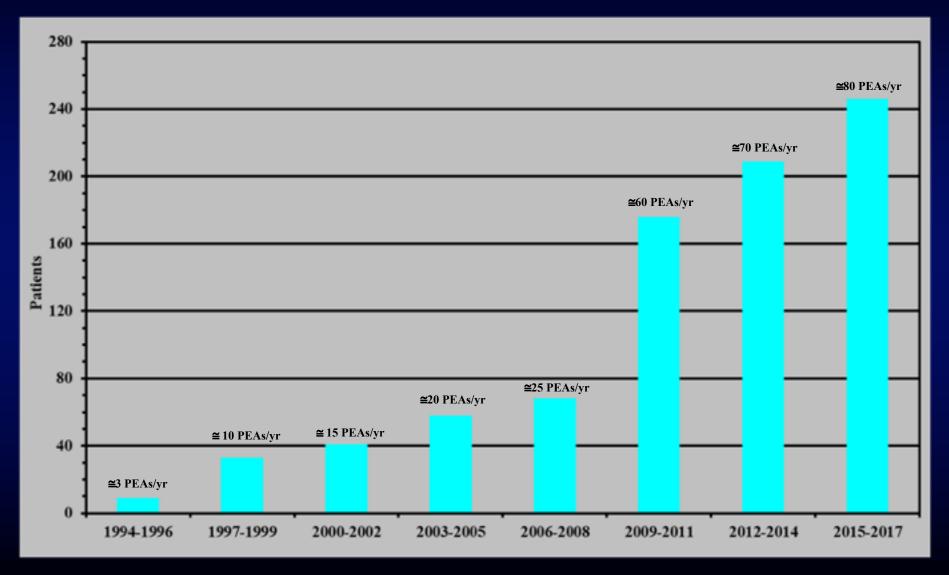

Kaplan-Meier curves for survival after pulmonary endarterectomy, dichotomized by age.

J Cardiovasc Med 2016, 17:144-151

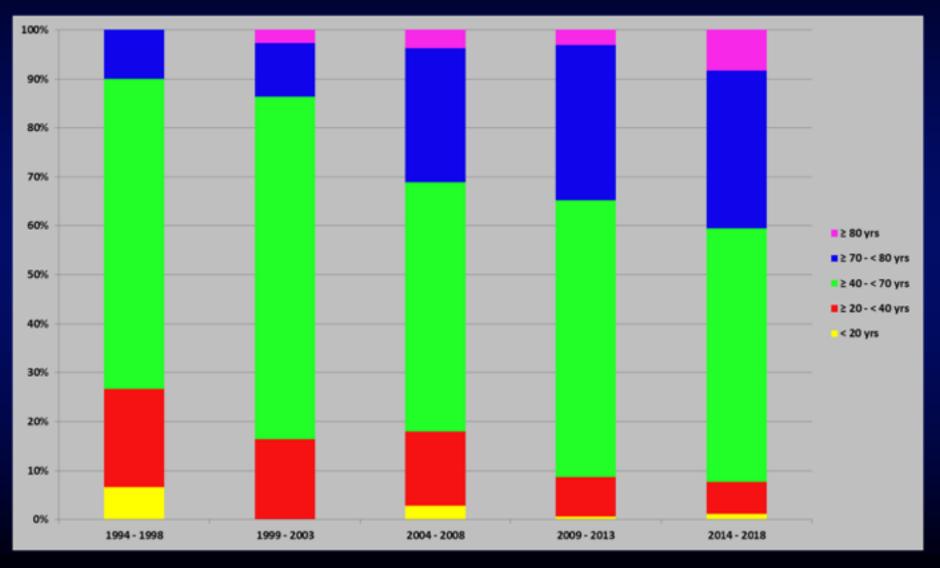
Hemodynamic evaluations over time in the two study populations. (a) Pulmonary vascular resistances (pvr); (b) pulmonary arterial pressure (apm); (c) cardiac output (ic).

J Cardiovasc Med 2016, 17:144-151

J Cardiovasc Med 2016, 17:144-151


In conclusion, the present study demonstrates that <u>PEA</u> is a well tolerated and effective treatment for CTEPH in the elderly. The clinical and hemodynamic improvement

> but also by a real improvement of the functional status. In conclusion, we believe that PEA should not be denied to CTEPH patients merely on the basis of advanced age; these patients should be properly identified and surgical treatment recommended at any center with consolidated surgical experience.


25 YEARS OF OUR PROGRAM

- National referral program
- Begin: April 1994
- September 2018: 897 PEAs performed

NUMBER OF PEAs BY THREE YEARS

AGE DISTRIBUTION BY FIVE YEARS OF 897 PEAS

PAVIA CTEPH PROGRAM January, 1^{st} – December, 31^{st} 2017 \rightarrow 516

NewEvaluations (232 pts)

CTEPH-PEA FUP (279 pts)

PAS-PEA FUP (5 pts)

CONFIRMED (125 pts - 54%)

- PROXIMAL LESIONS (110 pts)
 - 81 PEAs (3 pts evaluated in 2016)
 - 4 waiting for PEA
 - 15 refused evaluation for PEA
 - 3 refused PEA
- 8 with severe co-morbidities
- 2 died before evaluation or before PEA

OPERABILITY RATE the cnically 88%

- + comorbidity 82%+ refused 67%
- BPA program (12 pts)
- 3 BPAs (7 pts evaluated in 2016)
- 11 waiting for BPA
- 1 too early for BPA
- DISTAL LESIONS (3 pts)
- 2 controindication for DLTx
- 1 too early for DLTx

OTHER DIAGNOSIS (107 pts - 46%)

- RECENT APE (22 pts)
- 22 medical therapy
- PREVIOUS APE WITHOUT SIGNS (14 pts)
- 14 medical therapy
- APE OVER CTE LESIONS (9 pts)
 - 9 3-month medical teraphy \rightarrow new evaluation
- MINIMAL CTE LESIONS WITHOUT/LOW PH (12 pts) - 12 medical therapy
- PULMONARY ARTERY SARCOMA (10 pts)
- 5 PEAs 5 inoperable
- PULMONARY ARTERY ANEURYSM (3 pts)
- 2 pulmonary artery resection
- 1 interventional therapy
- MISCELLANEOUS (37 pts)
- 7 Eisenmenger 2 PH in Sclerodermia
- 1 PH by hydatid cystic 12 PAH
- 1 Mediastinal fibrosis 7 Group 5 PH
- 1 PH by RA mixoma 6 Other

CHARACTERISTICS

- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities

Usually patients referred for PEA are in NYHA functional class II, III or IV

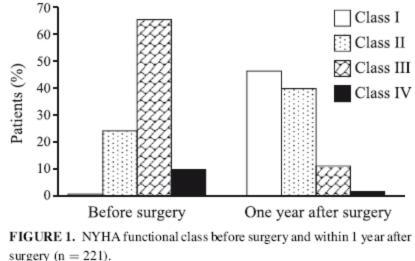
The NYHA functional class distribution of PEA referred patients is however very different from center to center

Also some countries do not even have a CTEPH-PEA center \rightarrow the diagnosis can therefore be very delayed and sending a patient to a PEA center could be very difficult

Consequently late referral is still a big issue in these patients

- *CTEPH* patients *must be* in *NYHA functional class III or IV* before being *evaluated for PEA*!
- Only in 2003 we have performed our *first PEA* in *NYHA functional class II* patient...with a program that was active *since 1994!*

ACQUIRED CARDIOVASCULAR DISEASE


(J Thorac Cardiovasc Surg 2011;141:702-10)

Surgical management and outcome of patients with chronic thromboembolic pulmonary hyperte international prospective registry

Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav J Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MI Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Sir

Study Design

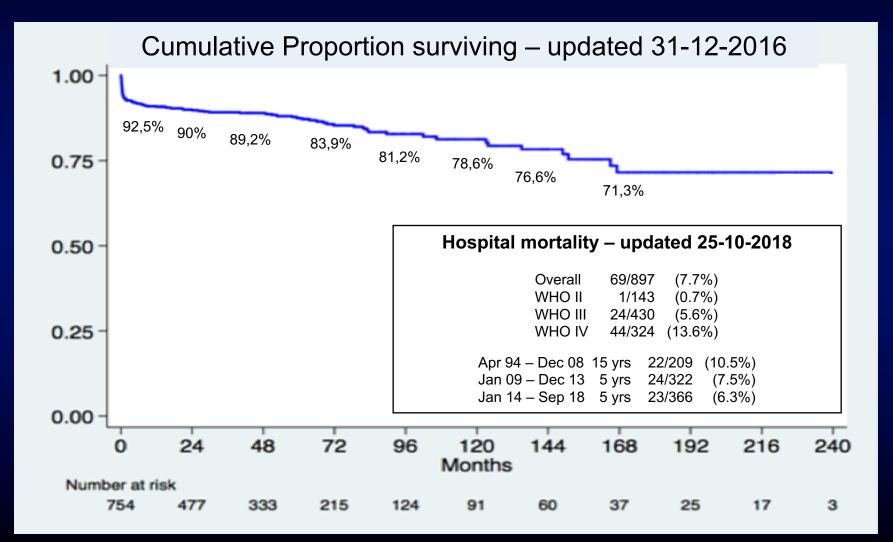
This prospective registry was designed to include newly diagnosed (≤6 months) consecutive patients with CTEPH in participating centers in Europe and Canada, from February 2007 to January 2009. The registry proto-

	INTERNATIONAL REGISTRY 2007-2008	PAVIA 2007-2008
II	25%	5%
III	65%	50%
IV	10%	45%

	INTERNATIONAL REGISTRY 2007-2008	PAVIA 2007-2008	PAVIA 2017-2018
II	25%	5%	20%
III	65%	50%	55%
IV	10%	45%	25%

Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension Results From an International Prospective Registry

Marion Delcroix, MD; Irene Lang, MD; Joanna Pepke-Zaba, MD; Pavel Jansa, MD; Andrea M. D'Armini, MD; Repke Snijder, MD; Paul Bresser, MD; Adam Torbicki, MD; Soren Mellemkjaer, MD; Jerzy Lewczuk, MD; Iveta Simkova, MD; Joan A. Barbera, MD; Marc de Perrot, MD; Marius M. Hoeper, MD; Sean Gaine, MD; Rudolf Speich, MD; Miguel A. Gomez-Sanchez, MD; Gabor Kovacs, MD; Xavier Jais, MD; David Ambroz, MD; Carmen Treacy, BSc; Marco Morsolini, MD; David Jenkins, MD; Jaroslav Lindner MD; Philippe Dartevelle, MD; Eckhard Mayer, MD; Gerald Simonneau, MD


Circulation. 2016;133:859-871

NYHA class IV is one of the most important predictor of death increasing mortality by 4 to 5 times

Table 4. Independent Correlates of Mortality for Operated and Not-Operated Patients						
	Operated (n=346) Not-Operated (n=219)				219)	
Covariate		95% CI	P Value	HR	95% CI	P Value
NYHA class III vs I–II				2.43	1.00-5.89	0.0489
NYHA class IV vs I–II		1.49-11.62	0.0065	4.76	1.76-12.88	0.0021

Circulation. 2016;133:859-871

CUMULATIVE PROPORTION SURVIVING OF 897 PEAs

CHARACTERISTICS

- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities

ACQUIRED CARDIOVASCULAR DISEASE

Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry

Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav Lindner, MD,^c Andrea D'Armini, MD,^d Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MD,^g Walter Klepetko, MD,^h Marion Delcroix, MD,^f Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Simonneau, MD,ⁱ and Philippe Dartevelle, MD^j

J Thorac Cardiovasc Surg. 2011 Mar;141(3):702-10

PVR

TABLE 3. Impact of specific p	parameters on in-hospital death and do	calls at 1 year			
		In-hospital-death-	Duality at 1 year		
		CO	= Ci)		
PVR (dyn.s.cm ⁻⁵), n = 340					
<400	a = 45	0.075/*	1.0.152/85		
400-800	m = 141	4-(2.8%)/*	8-(5.7%) NS		
800-1200	n - 104	6-(5.8%) NS	9-0.75238		
> 1290	n = 47	5(30475)(6(02.8%)		
NYHA functional class, n = 38	n = 75				
Land II	n = 75 n = 262	01 12 (4.475)P			
III IV	n = 252 n = 40	6-(32.2%)#			
History of confirmed pulmonary		1104 M			
Tes	a - 308	12-03-9% in NS	PATUR		
No	n - 78	6-07.7%48			
Presence of an inferior vena car	va filter, n = 298		PVR (dyn.s. cm^{-5}), n = 340		
Yes	n = 42	_		10	0.0000
No	n - 296	-	<400	n = 48	0 (0%)*
Circulatory arrow duration, a -					
≤ 20 min	m = 52	2(38%) 38	400-800	n = 141	4 (2.8%)*
21-40 min	m - 185	5-(2.7%) NS			
1-60 min	m - 165	8-(7.8%) NS	800-1200	n = 104	6 (5.8%) N
> 60 min	n = 38	3-(7.9%)(8			
Presence of coronary disease or Yes	n myocardial inflarction, n = 276 n = 40	4/30/25/27	> 1200	n = 47	5 (10.6%)†
No	n = 226	5-12.8768			2 (2000 / 0)
Presence of thromboghilic door		1121100	NYHA functional class, n =	386	
Yes	n - 141	7 c5.0% a NK			
No	* = 113	2-0.8768	I and II	n = 75	0‡
		teoxiation. Values are presented as numbers of patient	- (person		
compared with 1. (P < .005 compare	of with 1. NS compared with 2 (Fisher's exact	test)	III	n = 262	12 (4.6%)*
			IV	n = 49	6 (12.2%)†

J Thorac Cardiovasc Surg. 2011 Mar;141(3):702-10

Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension

David Jenkins1, Michael Madani2, Elie Fadel3, Andrea Maria D'Armini4 and Eckhard Mayer5

Eur Respir Rev 2017 Mar 15;26(143)

PVR

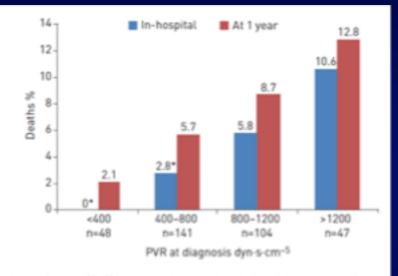


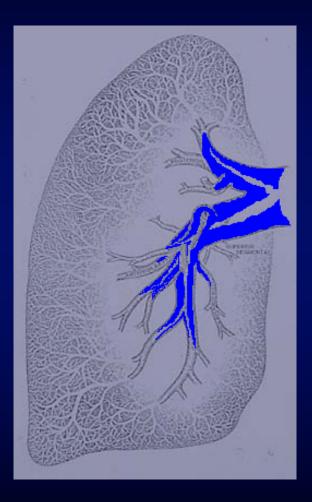
FIGURE 1 Effects of pulmonary vascular resistance [PVR] at diagnosis on in-hospital and 1-year mortality in patients with chronic thromboembolic pulmonary hypertension (CTEPH) undergoing pulmonary endarterectomy. Data from the international CTEPH registry [23]. *: p<0.05 compared with group with PVR >1200 dyn-s-cm⁻⁵.

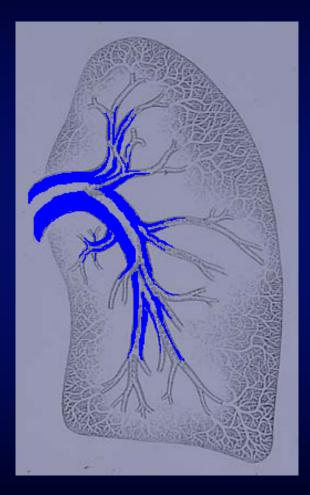
Eur Respir Rev 2017 Mar 15;26(143)

The changing landscape of chronic thromboembolic pulmonary hypertension management Michael Madani1, Takeshi Ogo2 and Gérald Simonneau3,4,5

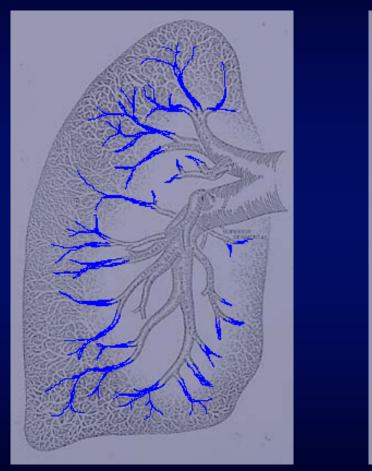
Eur Respir Rev. 2017 Dec 20;26(146)

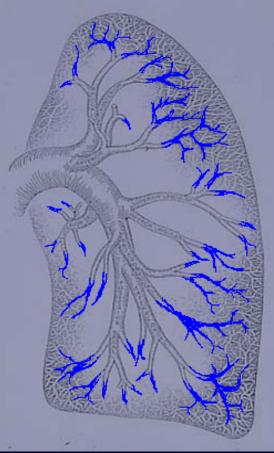
PVR


Measurement of a patient's haemodynamic status by right heart catheterisation is also an important part of risk assessment [1, 2]. Although high pre-operative PVR (>1000-1200 dyn-s-cm⁻⁵) is correlated with an increased risk of post-operative mortality [13, 14, 35, 36], patients with a high PVR are in a position to gain the most benefit from surgery, as they often show the greatest relative improvement in PVR after the procedure [13, 14]. Therefore, high PVR should not necessarily be considered a contraindication for pulmonary endarterectomy [14, 37]. High pre-operative PVR in conjunction with comparatively low levels of surgically accessible thrombotic material is indicative of significant microvascular disease [36, 38].


Eur Respir Rev. 2017 Dec 20;26(146)

CHARACTERISTICS


- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities


PROXIMAL LESIONS

SURGICAL TECHNIQUE

EVOLVING SURGICAL TECHIQUE

Morsolini et al

Acquired Cardiovascular Disease

Evolving surgical techniques for pulmonary endarterectomy according to the changing features of chronic thromboembolic pulmonary hypertension patients during 17-year single-center experience

Marco Morsolini, MD,^{a,b} Salvatore Nicolardi, MD,^{a,b} Elisa Milanesi, MD,^c Eleonora Sarchi, MD,^d Gabriella Mattiucci, MD,^a Catherine Klersy, MD, MSc,^e and Andrea Maria D'Armini, MD^a

(J Thorac Cardiovasc Surg 2012;144:100-7)

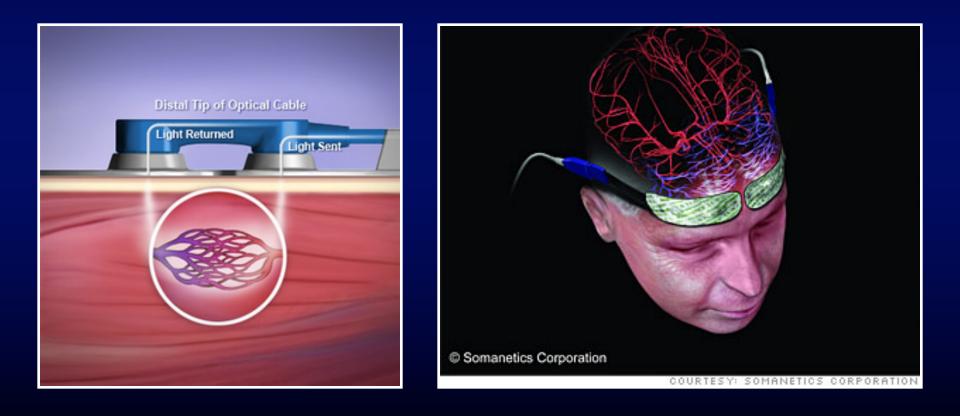
SURGICAL PROTOCOL

	Original San Diego protocol	Actual Pavia protocol
Aortic clamp	Yes	No
Cardioplegia	Yes	No
Hypothermia	Deep (18°C)	Moderate (24°C)
Circulatory arrest	A single (20 minutes) period of circulatory arrest for each side (with a maximum of a third)	Intermittent short periods of circulatory arrest (≈7-10 minutes) followed by short re-perfusion periods (≈5-7 minutes)
Total arrest time	Maximum 60 minutes	Maximum 180 minutes

Since 15-10-2009 (#245)

TAILORED AND LESS INVASIVE SURGERY

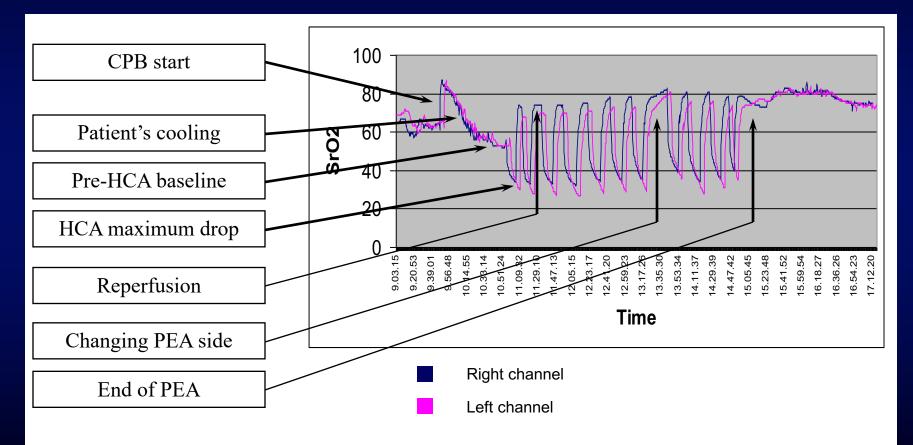
SURGICAL PROTOCOL



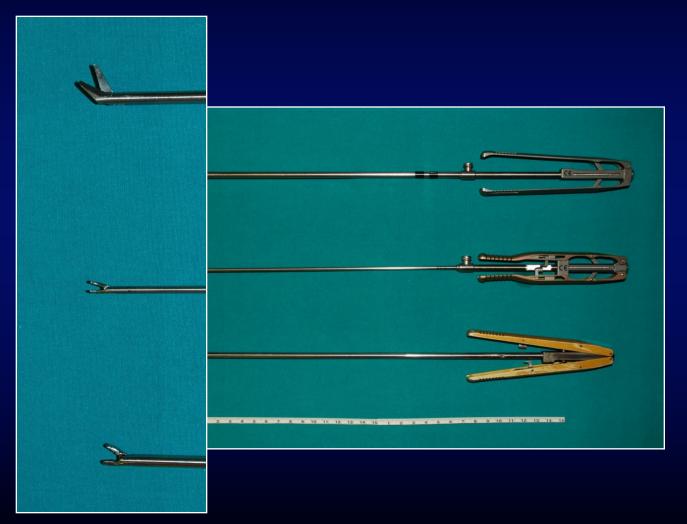
More than 650 PEAs with this technique

CEREBRAL PROTECTION

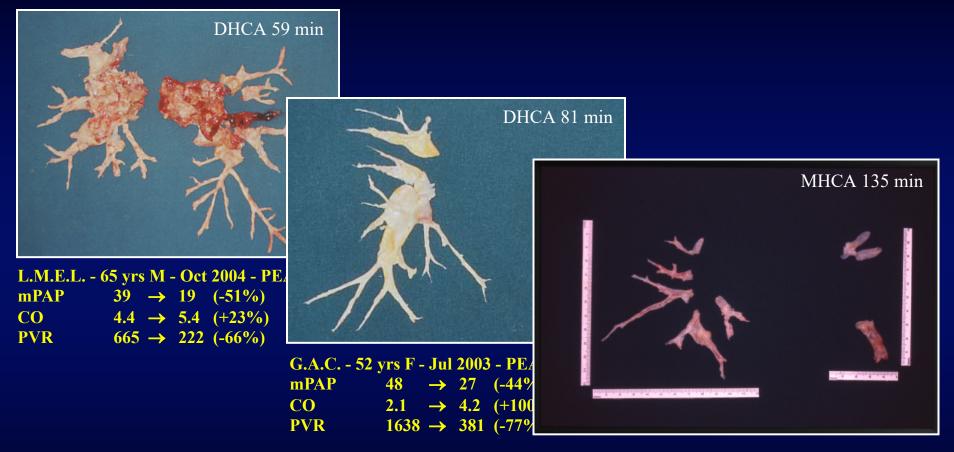
NIRS MONITORING


Near-InfraRed Spectroscopy

CEREBRAL PROTECTION


NIRS MONITORING

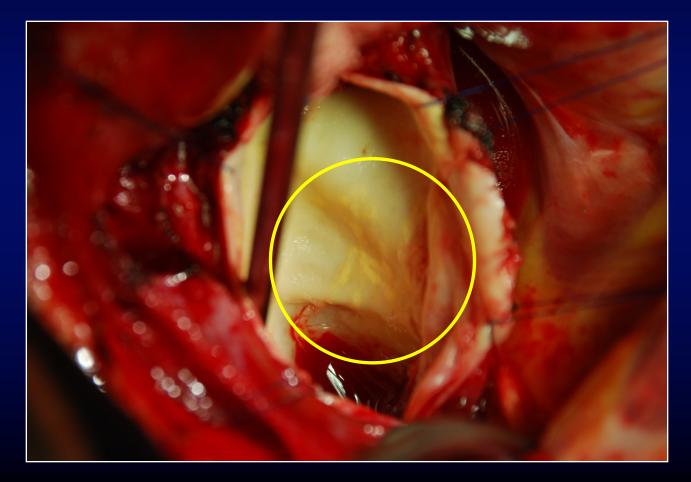
Near-InfraRed Spectroscopy



SURGICAL INSTRUMENTS

Derived from minimally-invasive cardiac surgery

JAMIESON TYPE1 vs. TYPE2 vs. TYPE3

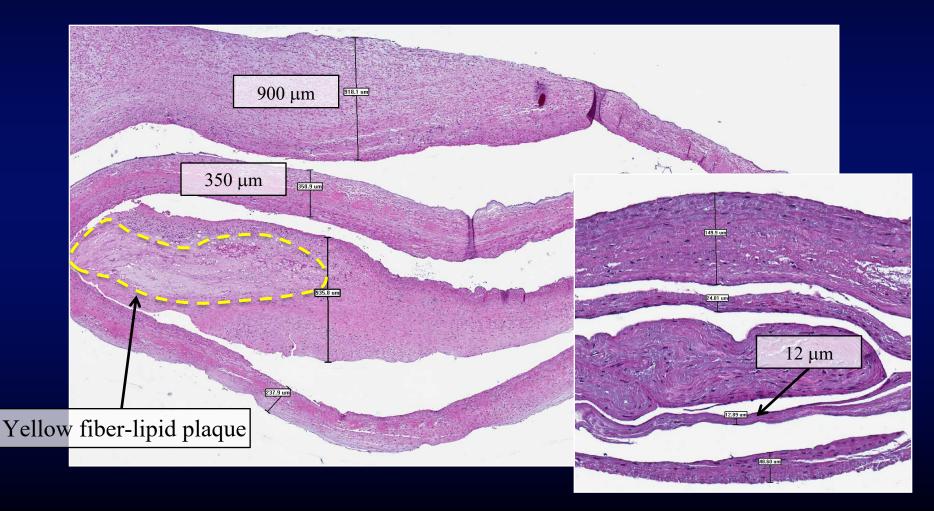


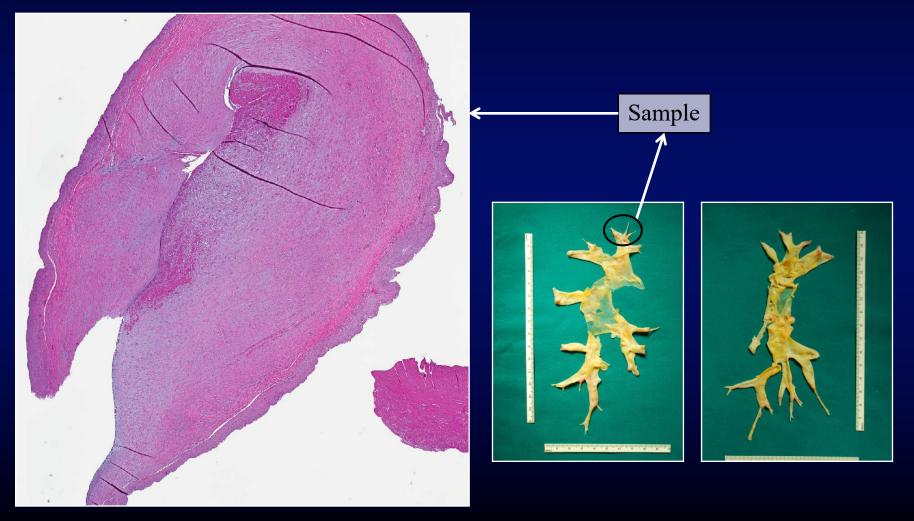
B.A 43 y	rs F - Ma	y 200	9 - PEA #233
mPAP	49	\rightarrow	19 (-61%)
CO	3.3	\rightarrow	5.0 (+52%)
PVR	1067	\rightarrow	224 (-79%)

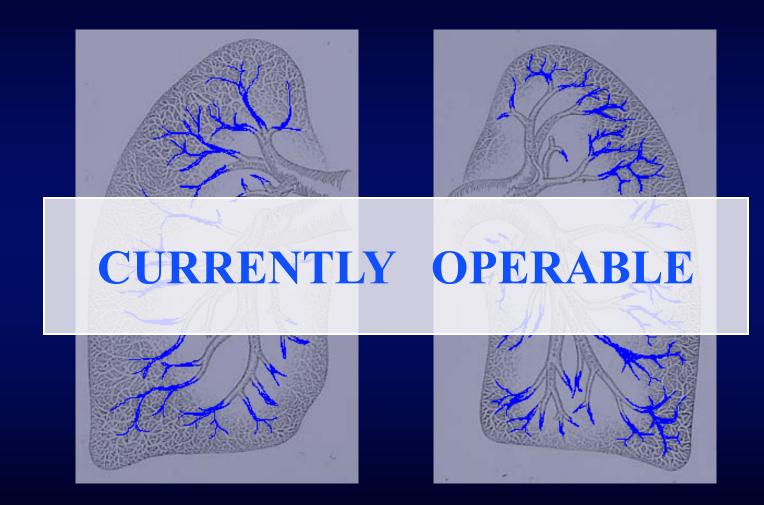
DHCA: Deep Hypothermic Circulatory Arrest

MHCA: Moderate Hypothermic Circulatory Arrest

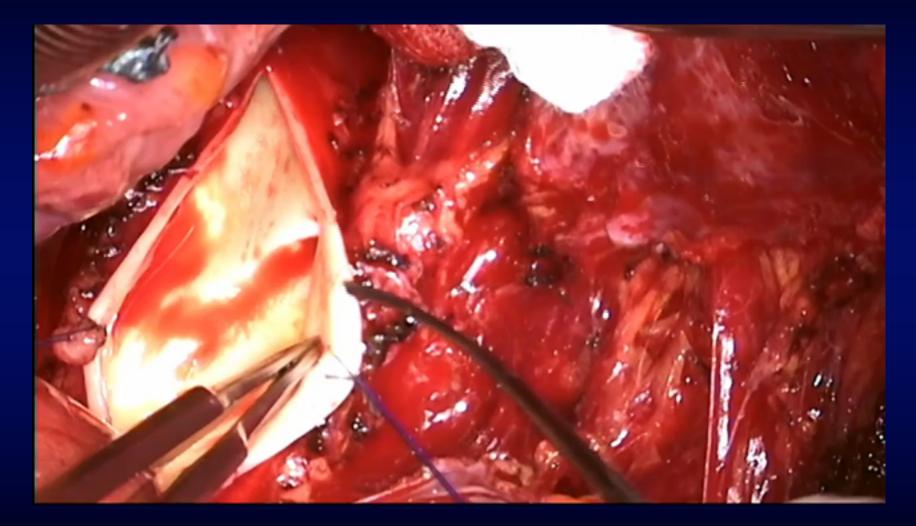
Yellow-fibro-lipid plaques included into the removed cast


Reverse Ariadne's thread

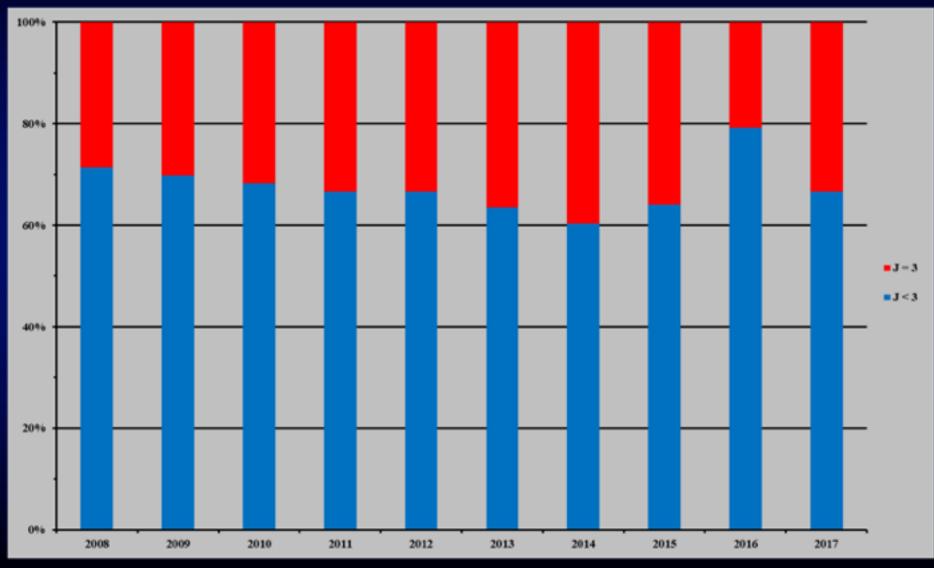

Proximal dissection for the clearance of distal obstructions



Proximal dissection for the clearance of distal obstructions



Proximal dissection for the clearance of distal obstructions



EVOLVING SURGICAL TECHNIQUE

JAMIESON TYPE3

D'Armini et al

Acquired Cardiovascular Disease

Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension

Andrea M. D'Armini, MD,^{a,b} Marco Morsolini, MD, PhD,^a Gabriella Mattiucci, MD,^{a,b} Valentina Grazioli, MD,^{a,b} Maurizio Pin, MD,^b Adele Valentini, MD,^c Giuseppe Silvaggio, MD,^b Catherine Klersy, MD, MSc,^d and Roberto Dore, MD^c (J Thorac Cardiovasc Surg 2014;148:1005-12)

			P
	Proximal	Distal	value
Bilateral PEA (n)	192 (86.9)	95 (86.4)	1.000
Associated procedures (n)	38 (17.2)	19 (17.3)	1.000
Total CPB time (min)	338 ± 81 (327-348)	361 ± 64 (349-373)	.005
Hypothermia (°C)	24.0 ± 0.9 (23.9-24.1)	23.7 ± 1.0 (23.5-23.8	.003
Total HCA time (min)	84 ± 32 (80-89)	102 ± 28 (97-107)	<.001
PAO2/FIO2 6 h	284 ± 91 (271-296)	280 ± 112 (259-301)	.758
MV duration (d)	2 (1-3)	2 (1-4)	.565
ICU stay (d)	4 (3-7)	4 (3-8)	.962
Postoperative hospital stay (d)	13 (10-16)	13 (11-17)	.541
	5 E-	Risk difference	
	Risk	(95% CI)	P value
Univariate analysis	2		
Hospital mortalit	у	1.8 (-4.2 to 7.9)	.647
Proximal	6.3%		
Distal	8.1%		
Lung reperfusion	edema -	-0.5 (-4.4 to 3.4)	1.000
Proximal	3.2%		
Distal	2.7%		
Tracheostomy	1000 C	-1.9 (-7.8 to 3.9)	.662
Proximal	8.3%		
Distal	6.4%		
Neurologic event	t	-4.7 (-10.6 to 1.1)	.209
Proximal	10.2%		
transient 13	/22		
permanent 9	0/22		
	5.5%		
Distal	3.370		

Bold values indicate significance (P < .05). CI, Confidence interval; CPB, cardiopulmonary bypass; HCA, hypothermic circulatory arrest; ICU, intensive care unit; MV, mechanical ventilation; $P.\omega_2/F\omega_2 \in h$, partial pressure of oxygen in arterial blood/ fraction of inspired oxygen ratio 6 hours after admission to ICU; *PEA*, pulmonary endurterectomy.

	Proximal	Distal
Mean pulmonary arterial p	ressure (mm Hg)	
Preoperative	44 ± 10	46 ± 11
At discharge	22 ± 7	24 ± 6
3-mo follow-up	24 ± 9	25 ± 7
12-mo follow-up	23 ± 7	24 ± 8
P value*	<.001	<.001
PVR (dyne · s · cm ⁻⁵)		
Preoperative	876 ± 392	926 ± 337
At discharge	251 ± 146	295 ± 161
3-mo follow-up	270 ± 175	300 ± 139
12-mo follow-up	243 ± 115	300 ± 224
P value*	<.001	<.001
Cardiac output (L/min)		
Preoperative	3.9 ± 1.3	3.7 ± 1.2
At discharge	5.0 ± 1.2	4.7 ± 1.2
3-mo follow-up	5.2 ± 1.1	5.0 ± 1.2
12-mo follow-up	5.0 ± 1.1	4.7 ± 1.0
P value*	<.001	<.001

PVR, Pulmonary vascular resistance. *Each time point versus preoperative. Test of interaction: P = .975 (mean pulmonary arterial pressure); P = .777 (PVR); P = .825 (cardiac output).

TABLE -	4. Par	rtial p	ressure of o	oxygen in	arterial bl	lood, n	nodified	Bruce
exercise	test,	and	6-minute	walking	distance	time	course	after
pulmona	ry en	darte	rectomy		a sarana na n			

	Proximal	Distal
Arterial partial pressure o	f oxygen (mm Hg)	
Preoperative	65 ± 12	66 ± 11
3-mo follow-up	82 ± 13	80 ± 11
12-mo follow-up	80 ± 11	80 ± 11
P value*	<.001	<.001
Modified Bruce exercise	test (m)	
Preoperative	51 (0-143)	52 (0-102)
3-mo follow-up	495 (182-658)	435 (143-586)
12-mo follow-up	520 (261-709)	474 (225-620)
P value*	<.001	<.001
6-min walking distance (I	n)	
Preoperative	277 ± 118	289 ± 112
3-mo follow-up	391 ± 118	398 ± 107
12-mo follow-up	389 ± 118	396 ± 112
P value*	<.001	<.001

*Each time point versus preoperative. Test of interaction: P = .317 (partial pressure of oxygen in arterial blood); P = .205 (modified Bruce exercise test); P = .962 (6-min walking distance).

NEUROPSYCHOLOGICAL OUTCOMES

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

INNOVATION

Neuropsychological outcomes after pulmonary endarterectomy using moderate hypothermia and periodic circulatory arrest

Benedetta Vanini, PsyD, PhD,^{a,b} Valentina Grazioli, MD,^a Antonio Sciortino, MD,^a Maurizio Pin, MD,^a Vera N. Merli, MD,^a Anna Celentano, MD,^a Ilaria Parisi,^a Catherine Klersy, MD,^c Lucia Petrucci, MD,^d Maurizio Salati, MD,^a Pierluigi Politi, MD, PhD,^b and Andrea M. D'Armini, MD^a

J Heart Lung Transplant. 2018 Feb in press

NEUROPSYCHOLOGICAL OUTCOMES

Table 1 Baseline Characteristics of Study	y Patients (n = 70)
Variable	
Male sex	31 (44%)
Age (years)	48 ± 10
Education (years)	10 ± 4
Presence of a partner	60 (86%)
Total circulatory arrest (minutes)	89 ± 27
Bilateral surgery	61 (87%)
Duration of anesthesia (minutes)	525 ± 78
Cerebral oxygen saturation (%)	29 ± 10

J Heart Lung Transplant. 2018 Feb in press

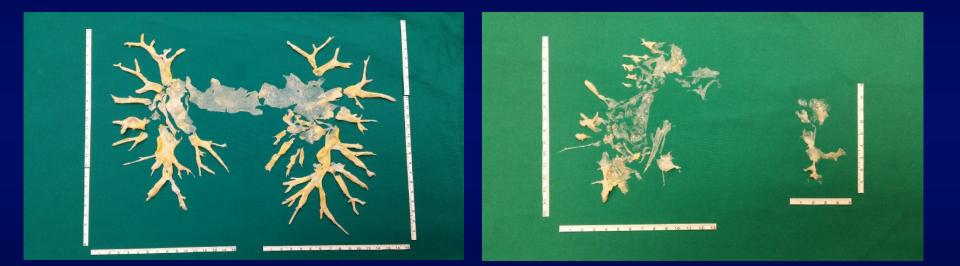
Variable	Baseline score	3-month score	Normal value*	Generalized linear model. p-value
	easevere score	Presidentia accivit	NOTING VEDE	p-value
Global cognition				
MASE	28.48 ± 2.73	28.88 ± 2.03	≥24	0.395
Long-term verbal memory				
RAULT-I	40.86 ± 8.93	37.01 ± 8.67	>28.53	< 0.001
RAILT-D	9.42 ± 3.09	8.07 ± 3.13	>4.70	< 0.001
Short-term verbal memory				
FDS	5.86 ± 1.24	6.12 ± 1.23	>3.75	0.290
Selective attention				
AM	48.07 ± 8.04	48.77 ± 6.69	>31	0.754
Divided attention, processing speed, planning,				
and flexibility				
THT A	38.14 ± 39.44	36.95 ± 37.39	< 93	0.656
THIT B	90.16 ± 78.44	87.66 ± 88.48	< 282	0.132
THT B-A	54.31 ± 65.46	54.22 ± 72.12	<186	0.078
Rotor speed				
GP-DH (seconds)	109.79 ± 61.47	105.40 ± 55.79	<170	0.007*
GP-NDH (seconds)	114.22 ± 56.95	113.63 g 64.14	< 180	< 0.001 ^b
Verbal fluency				
PVF	33.51 ± 11.62	36.76 ± 16.02	> 17	0.239
549	39.08 g 9.34	41.76 ± 11.14	> 25	0.078
Executive function				
FAB	16.36 ± 1.97	16.65 ± 1.66	>13.5	0.224
Anniaty				
HADS-A	7.30 ± 4.34	5.95 ± 3.64	57	< 0.001
Depression				
HADS-D	6.11 a 3.49	4.48 ± 3.17	\$7	0.002"
Quality of life				
5F-16 PC5	35.80 ± 8.63	45.08 ± 9.75	> 50	< 0.001 ^b
5F-16 MC5	47.58 ± 10.70	54.75 ± 8.93	>50	< 0.001

Data expersael as number (%) or as mean a standard deviation. AA: Attentional Ratrices; FAB, Franta Assumment Battary; F2S, Forward Dight Spar; GA-DH, Groovel Pephoart—dominant hand; LPADH, Groovel Pephoart—non-dominant hand; IADD A, Hospital Annisty and Depression Scale—Anniety; RADD-3, Hospital Annisty and Depression Scale—Depression; RMEX, Hol-Manetal Bash Damination; PF, Promotipojici Vetalal Interrog: BARL-14, Bay Auditory Vetal Learning Test—delayed nocal; BARL-14, Bay's Auditory Vetal Learning Test—immediate Recal; 1HE A, 1HE B, 1HE B-A, Tail Raking Test A, B, B-A; SH, Semantic Vetala Pleancy; SF-36 MCS, 36-Item Short Form—Restal Component Sammary; SF-36 MCS, 36-Item Short Form—Prepriod Component Sammary.

"Normal value for the Italian population (wher to Table 51 in the Supplementary Material antine) "Significant change at follow-up.

NEUROPSYCHOLOGICAL OUTCOMES

The main findings of our study show that *repeated short periods of MHCA* during PEA in patients with CTEPH *did not result in any neuropsychological complications*

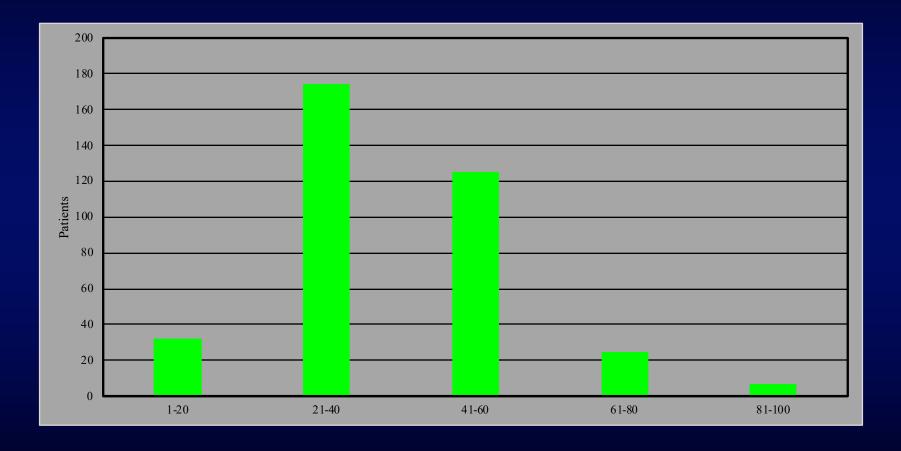

Although *learning ability* and *delayed memory* showed a slight deterioration among study patients at 3 months after PEA, they continued to *remain well* and in the *normal range* for both age and years of study

More remarkably, we found a *statistically significant postsurgical improvement* in motor speed, which was accompanied by a *better quality of life* and *reduced symptoms* of *depression* and *anxiety*

CHARACTERISTICS

- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities

PLANTY vs. SCARSE CTE OCCLUSIONS



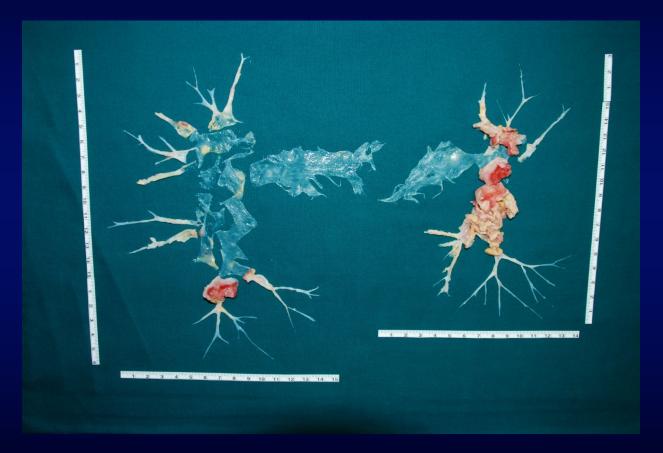
PULMONARY ENDARTERECTOMY: RELATIONSHIP BETWEEN TOTAL REOPENED BRANCHES AND OUTCOMES

GROUPED BY REOPENED BRANCHES

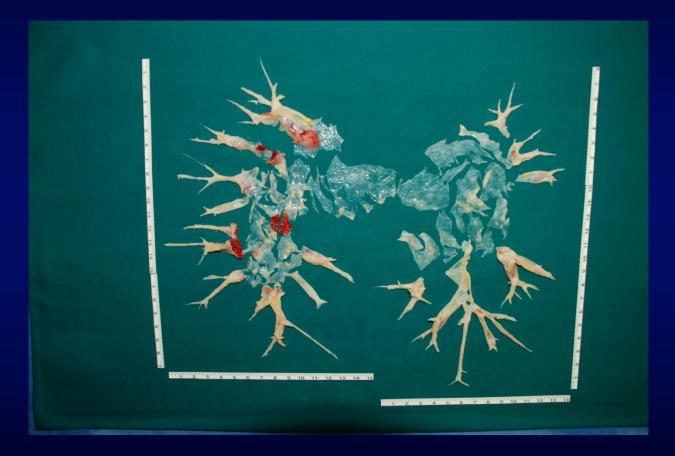
344 PEA

REOPENED BRANCHES AND TCA

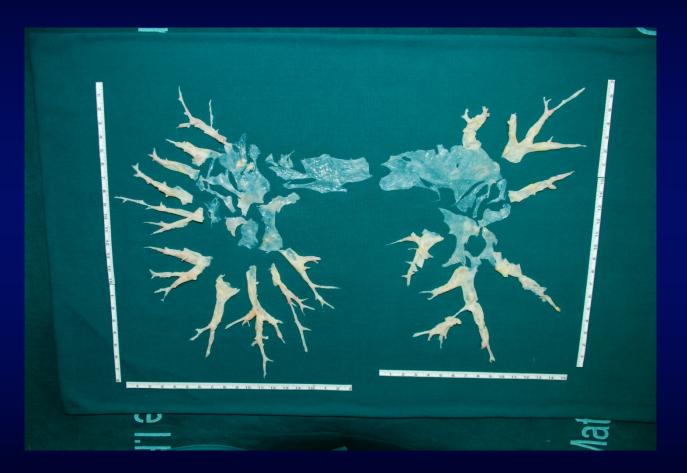
	N°	Mean	SD	Min	P25	P50	P75	Max
Reopened Branches	344	38.7	± 15.7	7	28	37	48	100
TCA (min)	344	93.5	± 26.9	0	77	93	113	162


ASSOCIATION OF HEMODYNAMIC AND PAO2 DATA AT 3 MONTHS AND THE NUMBER OF REOPENED BRANCHES

		Number of Reop	ened branches subgr	Number of Reopened branches (continuous)				
Outcome measure at 3 months	(a) Branches reopened 7-26	(b) Branches reopened 27-41	(c) Branches reopened 42-100	Univariable Model P value*	Multivariable Model P value**	Sperman's rho	Univariable Model P value	Multivariable Model P value**
PVR (dyne/sec/cm ⁻⁵)	315 ± 163	277 ± 148	232 ± 105	< 0.001 a vs b 0.35 a vs c 0.001 b vs c 0.06	0.045 a vs b 0.41 a vs c 0.040 b vs c 0.64	- 0.25	< 0.001	< 0.001
CO (l/min)	5.1 ± 1.1	5.0 ± 1.2	5.2 ± 1.1	0.31	0.33	0.07	0.37	0.83
CI (l/min/m ²)	2.8 ± 0.5	2.7 ± 0.5	2.8 ± 0.5	0.34	0.29	0.05	0.43	0.92
mPAP (mmHg)	26 ± 9	24 ± 8	22 ± 6	0.009 a vs b 0.25 a vs c 0.007 b vs c 0.46	0.027 a vs b 0.15 a vs c 0.022 b vs c 1.00	- 0.18	<0.001	<0.001
PAO2 (mmHg)	77.4 ± 13.1	79.7±12.3	82.2 ± 11.3	0.06	0.35	0.17	0.003	0.05


ASSOCIATION OF FUNCTIONAL DATA AT 3 MONTHS AND THE NUMBER OF REOPENED BRANCHES

		Number of R	eopened branches	Number of Reopened branches (continuous				
	(a) Branches reopened 7-26	(b) Branches reopened 27-41	(c) Branches reopened 42-100	Univariable Model P value*	Multivariable Model P value**	Mean ± SD	Univariable Model P value*	Multivariable Model P value**
WHO class I/II III/IV	5 (9%)	4 (4%)	0 (0%)	0.000	0.17	24 ± 7		
6 mWD (m) ≥400 <400	19 (38%)	42 (45%)	71 (64%)	0.003 a vs b 1.00 a vs c 0.009 b vs c 0.023	0.036 a vs b 1.00 a vs c 0.06 b vs c 0.20	$\begin{array}{c} 43\pm16\\ 37\pm15 \end{array}$	0.004	0.013
Bruce (m) ≥400 <400	18 (43%)	39 (48%)	76 (72%)	<0.000 a vs b 1.00 a vs c 0.003 b vs c 0.003	0.021 a vs b 1.00 a vs c 0.047 b vs c 0.083	$\begin{array}{c} 44\pm16\\ 36\pm15 \end{array}$	<0.001	0.003


SURGICAL SPECIMENTS – J1

SURGICAL SPECIMENTS – J2

SURGICAL SPECIMENTS – J3

Our study shows a *clear correlation* between the *number* of *reopened pulmonary artery branches* and *hemodynamic values* and *functional data (pO2, NYHA functional class, 6mwt and modified Bruce test) already at 3 months*

CONCLUSIONS

In our hands a *longer TCA time* allows the surgeon to explore *all the pulmonary vascular bed*, find *unexpected chronic thromboembolic material* and *clean more branches* even in more complex clinical conditions as well as in *distal vassels*

CHARACTERISTICS

- Age
- NYHA functional class
- PVR
- Distribution of CTE lesions
- Amount of CTE occlusions
- Comorbidities

COMORBIDITIES

- There are few studies that consider the comorbidities as a risk factor for the PEA
- The absolute contraindication is an important parenchymal lung disease
- PEA score could be usefull

COMORBIDITIES

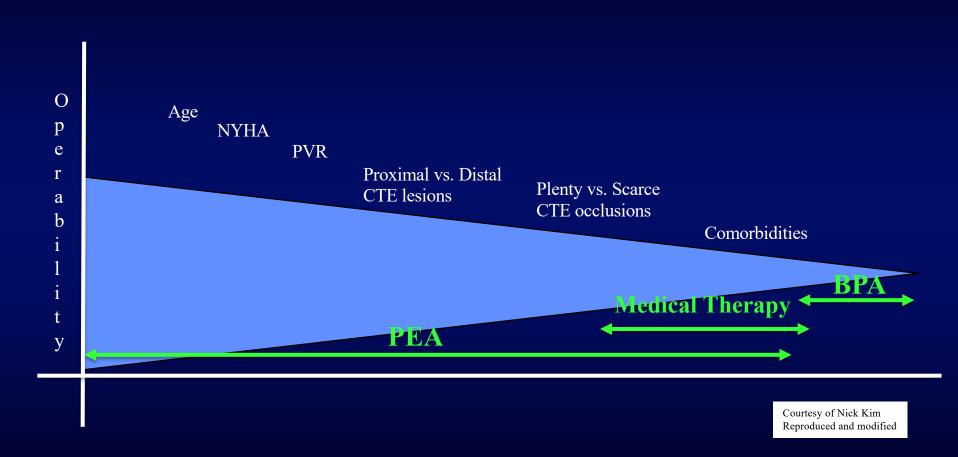
Long-Term Outcome of Patients With Chronic Thromboembolic Pulmonary Hypertension Results From an International Prospective Registry

Marion Delcroix, MD; Irene Lang, MD; Joanna Pepke-Zaba, MD; Pavel Jansa, MD; Andrea M. D'Armini, MD; Repke Snijder, MD; Paul Bresser, MD; Adam Torbicki, MD; Soren Mellemkjaer, MD; Jerzy Lewczuk, MD; Iveta Simkova, MD; Joan A. Barbera, MD; Marc de Perrot, MD; Marius M. Hoeper, MD; Sean Gaine, MD; Rudolf Speich, MD; Miguel A. Gomez-Sanchez, MD; Gabor Kovacs, MD; Xavier Jais, MD; David Ambroz, MD; Carmen Treacy, BSc; Marco Morsolini, MD; David Jenkins, MD; Jaroslav Lindner MD; Philippe Dartevelle, MD; Eckhard Mayer, MD; Gerald Simonneau, MD

Circulation. 2016;133:859-871

COMORBIDITIES

Table 4. Independent Correlates of Mortality for Operated and Not-Operated Patients									
		Operated (n=346)			Not-Operated (n=219)				
Covariate	HR	95% CI	P Value	HR	95% CI	PValue			
NYHA class III vs I–II				2.43	1.00-5.89	0.0489			
NYHA class IV vs I–II	4.16	1.49-11.62	0.0065	4.76	1.76-12.88	0.0021			
RAP	1.34	0.95-1.90	0.0992	1.50	1.20-1.88	0.0004			
PAP	0.67	0.47-0.94	0.0226						
History of acute VTE	0.48	0.24-0.97	0.0413						
History of cancer	3.02	1.36-6.69	0.0065	2.15	1.18-3.94	0.0129			
Coronary disease/myocardial infarction	-			1.81	1.00-3.28	0.0492			
CHF or LV dysfunction	-			1.98	1.02-3.83	0.0440			
Dialysis-dependent renal failure	11.52	1.42-93.48	0.0221	-					
COPD	-			2.14	1.22-3.73	0.0075			
PAH-targeted therapy started at diagnosis	2.62	1.30-5.28	0.0072	-	-	-			
Postoperative PH	3.66	1.72-7.82	0.0008	-	-	-			
All other complications	3.82	1.72-8.51	0.0010		-	-			
Additional cardiac procedure		1.54-6.24	0.0015	-	-	-			


Cox multivariable analysis of operated and not-operated patients, separately. CHF indicates congestive heart failure; CI, confidence interval; COPD, chronic obstructive pulmonary disease; HR, hazard ratio; LV, left ventricle; NYHA, New York Heart Association; PAH, pulmonary arterial hypertension; PAP, pulmonary artery pressure; PH, pulmonary hypertension; RAP, right atrial pressure; and VTE, venous thromboembolism

Circulation. 2016;133:859-871

CONCLUSION

- A single characteristic usually is not enough to identify a poor or a good candidate for PEA
- Multidisciplinary CTEPH team (at least one experienced surgeos) is the basis for the correct selection of the patients
- For "less experienced centers" or in general for all centers a second opinion, in absence of PEA score, could be the optimal solution for complex patients

CONCLUSION

CHEST STUDY

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Hossein-Ardeschir Ghofrani, M.D., Andrea M. D'Armini, M.D., Friedrich Grimminger, M.D., Marius M. Hoeper, M.D., Pavel Jansa, M.D., Nick H. Kim, M.D., Eckhard Mayer, M.D., Gerald Simonneau, M.D., Martin R. Wilkins, M.D., Arno Fritsch, Ph.D., Dieter Neuser, M.D., Gerrit Weimann, M.D., and Chen Wang, M.D., for the CHEST-1 Study Group*

CHEST STUDY

ORIGINAL ARTICLE PULMONARY VASCULAR DISEASES

Riociguat for the treatment of chronic thromboembolic pulmonary hypertension: a long-term extension study (CHEST-2)

Gérald Simonneau¹, Andrea M. D'Armini², Hossein-Ardeschir Ghofrani^{3,4}, Friedrich Grimminger³, Marius M. Hoeper⁵, Pavel Jansa⁶, Nick H. Kim⁷, Chen Wang⁸, Martin R. Wilkins⁹, Arno Fritsch¹⁰, Neil Davie¹⁰, Pablo Colorado¹¹ and Eckhard Mayer¹²

Eur Respir J 2015; 45: 1293-1302 | DOI: 10.1183/09031936.00087114

BENEFIT STUDY

CLINICAL RESEARCH

Clinical Trials

Bosentan for Treatment of Inoperable Chronic Thromboembolic Pulmonary Hypertension

BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a Randomized, Placebo-Controlled Trial

Xavier Jaïs, MD,* Andrea M. D'Armini, MD,† Pavel Jansa, MD,‡ Adam Torbicki, MD,§ Marion Delcroix, MD,|| Hossein A. Ghofrani, MD,¶ Marius M. Hoeper, MD,# Irene M. Lang, MD,** Eckhard Mayer, MD,†† Joanna Pepke-Zaba, MD,‡‡ Loïc Perchenet, PHD,§§ Adele Morganti, MSc,§§ Gérald Simonneau, MD,* Lewis J. Rubin, MD,|||| for the BENEFiT Study Group

Clamart, France; Pavia, Italy; Prague, Czech Republic; Warsaw, Poland; Leuven, Belgium; Giessen, Hannover, and Mainz, Germany; Vienna, Austria; Cambridge, United Kingdom; Allschwil, Switzerland; and La Jolla, California (J Am Coll Cardiol 2008;52:2127-34)