

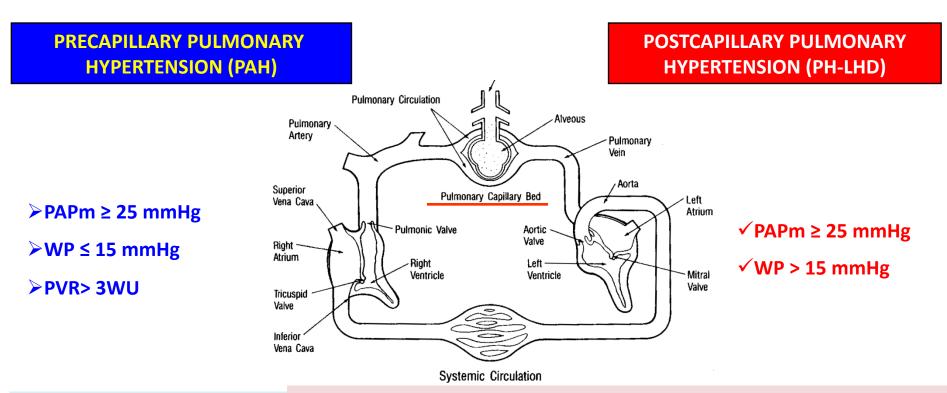
The problem of PH in the setting of Heart Transplantation and LVAD

Maria Frigerio

2nd Section of Cardiology, Heart Failure & Cardiac Transplant Unit DeGasperis CardioCenter, Niguarda Hospital, Milan, Italy

GIORNATE CARDIOLOGICHE TORINESI

- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives

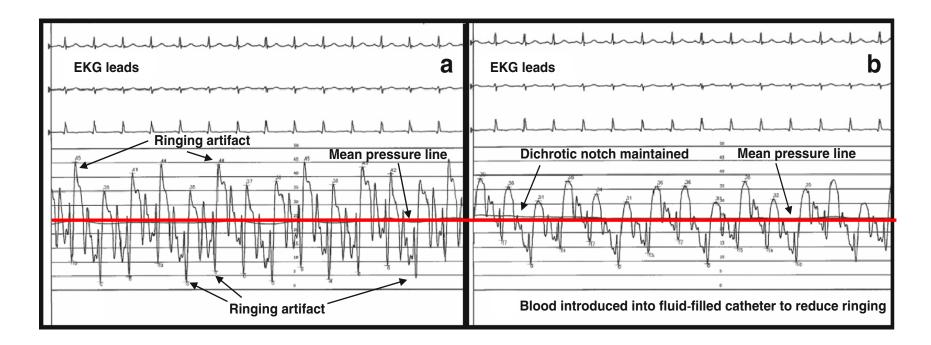


GIORNATE CARDIOLOGICHE TORINESI

- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives

- 1. Pulmonary Arterial Hype **Pulmonary Hypertension due to Left Heart Disease**
- 2. Pulmonary Hypertension Disease
 - 2.1 LV systolic dysfunction
- 3. Pulmonary Hypertension Disease/Hypoxia 2.2 LV diastolic dysfunction
- 4. Chronic Thromboembolic 2.3 Valvular heart disease
- Hypertension 2.4 LV outflow obstruction and congenital cardiomyopathy
- 5. Other/Unknown origin **2.5 Congenital/Acquired pulmonary vein stenosis**

Hemodynamic variables to define the precapillary component of group 2 PH


Characteristic	TPG	DPG	PVR	PAC
Physiological background	-/+	+++	++ (+)	++
Independence from flow and filling pressures	-	+ (+)	-/+	-
Dependent on quality of PAWP recording	+	++	+	-
Marker of disease	+	+ (+)	++	-/+
Marker of prognosis	-/+	+	++	++
Historical variable	+++	-/+	+++	-
Level of confort for clinical use	++	+	+++	-

- PVR remains a robust variable to describe CpcPH
- DPG and PAC may have value but may be limited by methodological uncertainties

Pulmonary Vascular Disease: Hemodynamic Assessment and Treatment Selection—Focus on Group II Pulmonary Hypertension

Bhavadharini Ramu¹ · Brian A. Houston¹ · Ryan J. Tedford¹

Accuracy and reproducibility of DPG and mPAP measurements

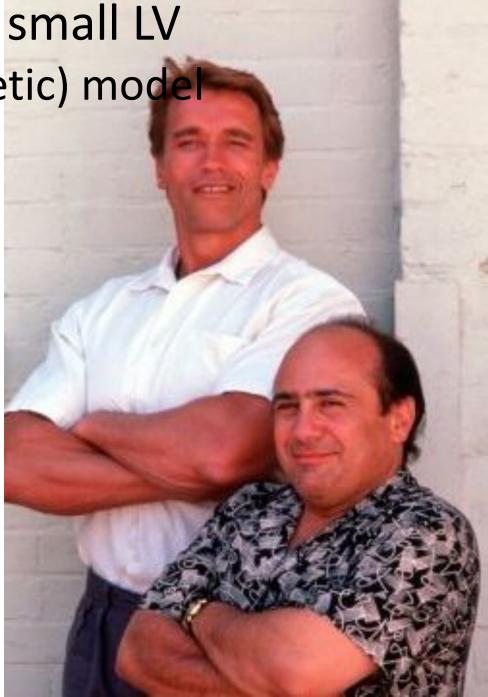
Courtesy of A. Garascia

TF9 PROPOSAL FOR THE HEMODYNAMIC DEFINITION OF PH-LHD

>Isolated post capillary PH (IpcPH)

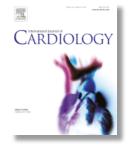
• PAWP > 15 mmHg AND PAPm > 20mmHg AND PVR ≤ 3WU

Combined post and precapillary PH (CpcPH)


• PAWP > 15mmHg AND PAPm > 20mmHg AND PVR > 3WU

Courtesy of A. Garascia

PH-LHD with large or small LV


- the Large LV (hypokinetic) model
- the "classic" model (isolated postcapillary PH)
- Diastolic gradient <=0
- Worsening/severe PH is generally a late phenomenon, or is related with severe mitral regurgitation
- resistant/"fixed" PH is generally a late phenomenon
- RA pressure may be low or moderately high, except during worsening (congestive) HF episodes

PH-LHD with large or small LV -the Small LV (restrictive) model

- The "insidious" model (combined post-& precapillary PH)
- Diastolic gradient >0
- Severe and resistant/"fixed" PH is a relatively early phenomenon, even when symptoms are mild to moderate
- RA pressure may be high or very high even when symptoms are mild to moderate
- Lately, RV dysfunction may mask established pulmonary vascular disease

Editorial

Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure?

ENABLE 2002

Paul R. Kalra[#], James C.C. Moon, Andrew J.S. Coats Clinical Cardiology, National Heart and Long Institute, Developmer Street, London 5007 813, UK

Macitentan in pulmonary hypertension due to left ventricular dysfunction Melody 1, 2018

Jean-Luc Vachiéry¹, Marion Delcroix ^{©2}, Hikmet Al-Hiti³, Michela Efficace⁴, Martin Hutyra⁵, Gabriela Lack⁶, Kelly Papadakis⁷ and Lewis J. Rubin⁸ Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial SIOVAC 2018

Riociguat for Patients With Pulmonary Hypertension Caused by Systolic Left Ventricular Dysfunction

A Phase IIb Double-Blind, Randomized, Placebo-Controlled, Dose-Ranging LEPHT 2013 Hemodynamic Study

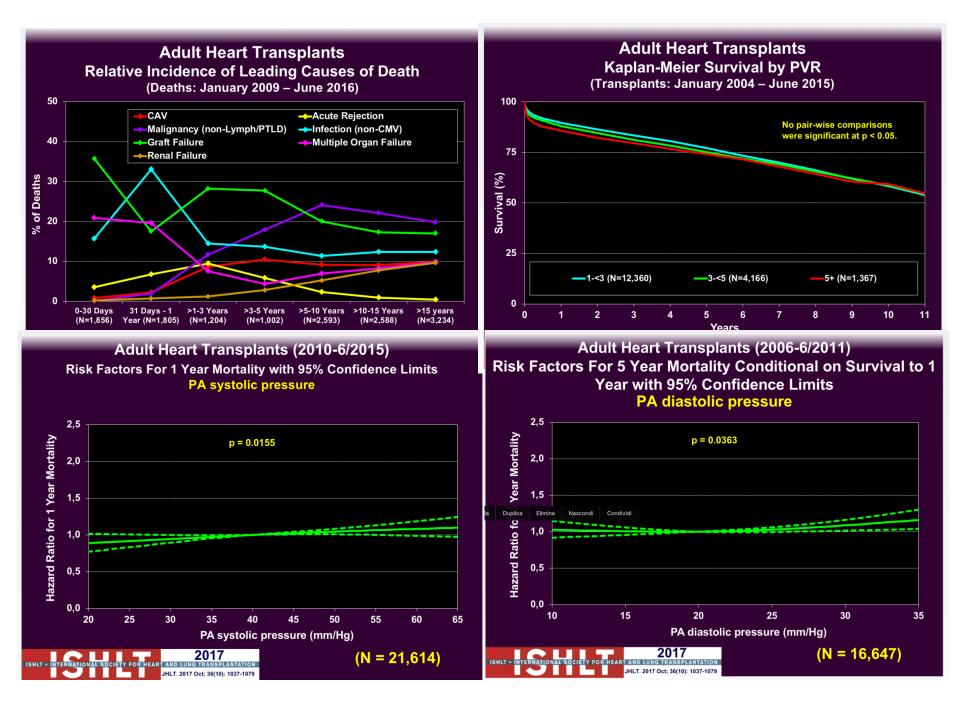
Effect of Vericiguat, a Soluble Guanylate Cyclase Stimulator, on Natriuretic Peptide Levels in Patients With Worsening Chronic Heart Failure and Reduced Ejection Fraction The SOCRATES-REDUCED Randomized Trial

Mihai Gheorghiade, MD; Stephen J, Greene, MD; Javed Butler, MD, MIHH, MBA; Gerasimos Filippatos, ND; Carolyn S, P. Lam, MBBS; Aldo P. Maggioni, MD; Piotr Ponikowski, MD; Sanjiv J, Shah, MD; Scott D. Solomon, MD; Elisabeth Kraigher-Krainer, MD; Eliana T. Samano, MD; Katharina Müller, DiplStat; Lothar Roessig, MD; Burkert Pieske, MD; for the SOCRATES REDUCED Investigators and Coordinators

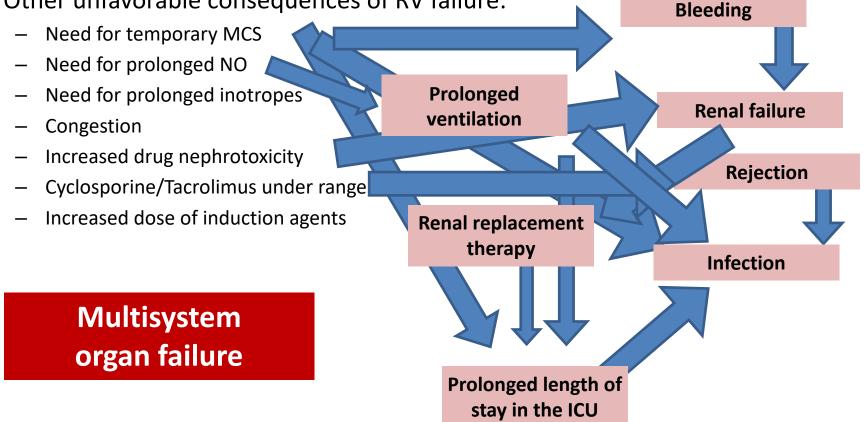
SOCRATES 2015

Courtesy of A. Garascia

"DE GASPERIS" CARDIO CENTER



GIORNATE CARDIOLOGICHE TORINESI



- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives

PH as a risk factor for HTX

- Irreversible ("fixed") PH is associated with early Graft Failure due to RV failure
- Graft Failure is the leading cause of early death after HTX (<30 days/In-hosp)
- Early deaths represent the most part of 1-year deaths
- Other unfavorable consequences of RV failure:

The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update

RECOMMENDATION	CLASS	LEVEL
A vasodilator challenge should be administered when		C
the pulmonary artery systolic pressure is >= 50 mm Hg	•	
and either the <i>transpulmonary gradient is >= 15 mm Hg</i>		
or the <i>pulmonary vascular resistance (PVR) is > 3 WU</i>		
while maintaining a systolic arterial blood pressure > 85		
mm Hg		

Courtesy of A. Garascia

GIORNATE CARDIOLOGICHE TORINESI

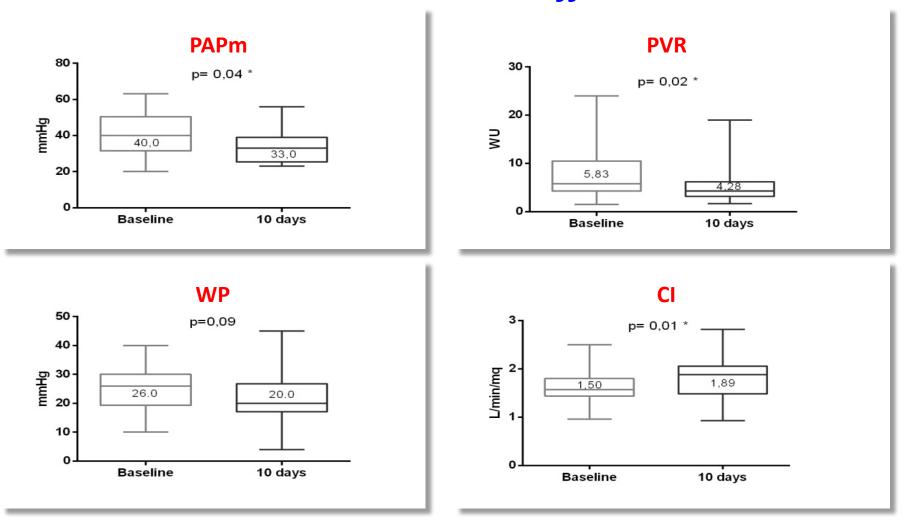
- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives

Today: is PH reversible?

parameter	Target
PAPs	< 50 mmHg
PVR	< 3 Wood Units
TPG	< 15 mmHg
Systolic BP	> 85 mmHg

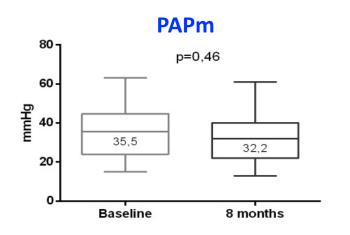
What	When and how
SNP	 Sys BP > 90 mmHg, "acute" challenge 2-3 days if partially responsive, with increased CO, limited by hypotension
Milrinone	- If partially responsive to SNP, with limited efficacy on CO
+ Dobutamine	 If partially responsive to SNP, limited by hypotension May be less effective in pts on beta-blockers
Levosimendan	 If partially responsive to SNP, with limited efficacy on CO, and clinical reasons for hypothesizing repeated treatment
IABP	 Refractory HF, clinical "Bridge" to LVAD

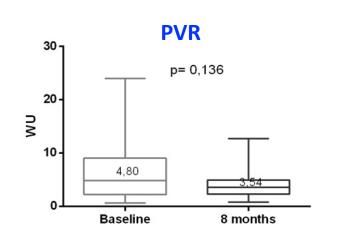
Tomorrow: how to keep HTXcompatible hemodynamics?


What	When and how
Long-term maintenance	- No/partial response to acute SNP
Repeated, planned Levosimendan	 1st dose (partially) effective 1st dose well tolerated The patient can be discharged Planned treatment @ 4 (3) weeks Inpatient if low BP, arrhythmias Outpatient/home based if stable (informed consent required)
Milrinone, continuous	 initially (partially) effective initially well tolerated Levosimendan not effective
Mitraclip?	Severe MRGood response to SNPprocedure success highly probable
LVAD	 Advanced/refractory HF Low probability to get HTX Suitable for LVAD

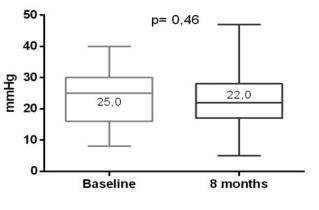
parameter	Target
PAPs	< 50 mmHg
PVR	< 3 Wood Units
TPG	< 15 mmHg
Systolic BP	<u>></u> 85 mmHg

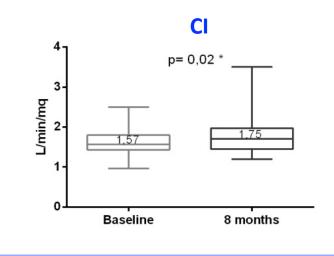
LEVOSIMENDAN BTT/BTC: THE NIGUARDA EXPERIENCE (n=67) Short-term effects




Courtesy of A. Garascia

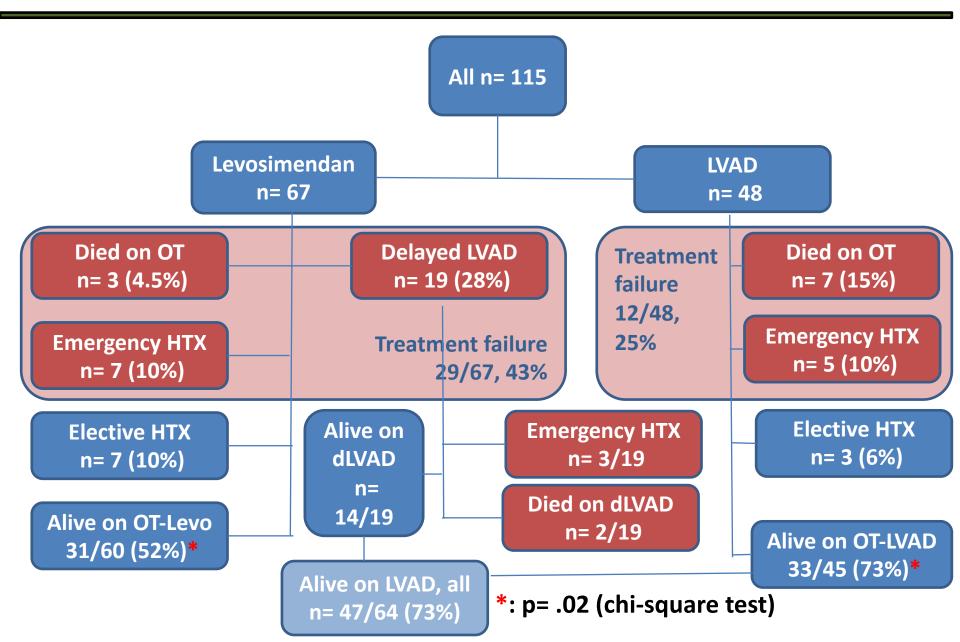
"DE GASPERIS" CARDIO CENTER

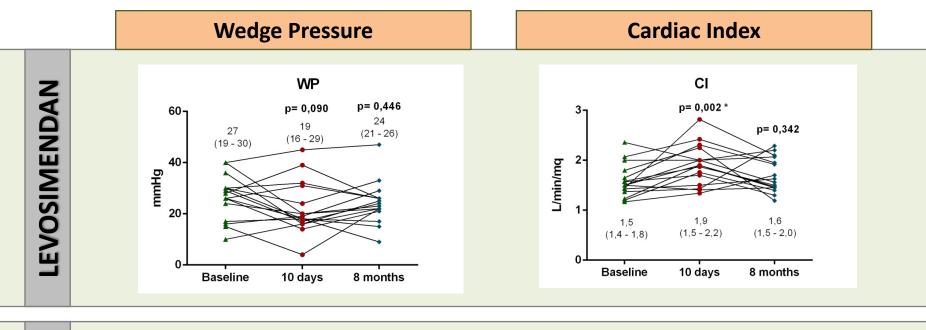



LEVOSIMENDAN BTT/BTC: THE NIGUARDA EXPERIENCE – long term effects

Courtesy of A. Garascia

"DE GASPERIS" CARDIO CENTER

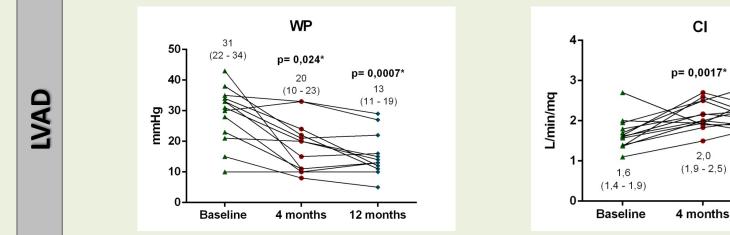

GIORNATE CARDIOLOGICHE TORINES


- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives

Repeated Levosimendan or LVAD BTT/BTC-1y

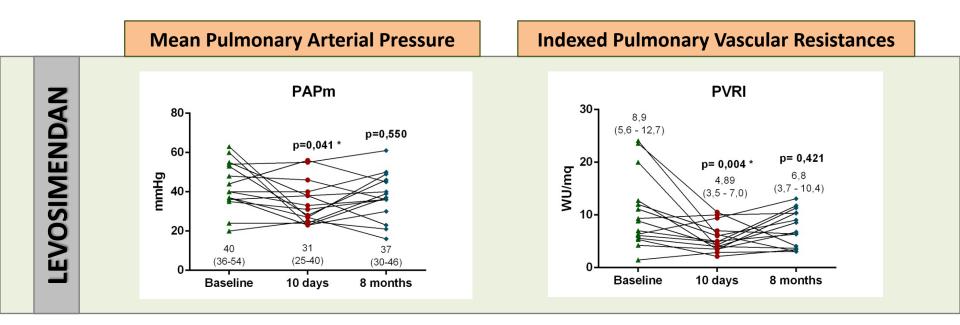
Repeated Levosimendan and LVAD

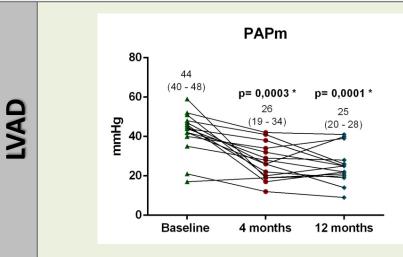
Right heart catheterization - 1

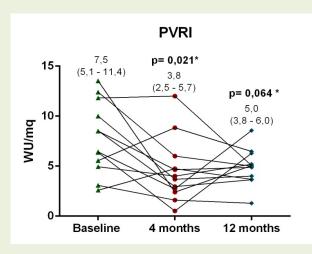


 $p = 0.0081^*$

2.0


(1, 8 - 2, 4)


12 months



Repeated Levosimendan and LVAD

- Right heart catheterization 2

Pre-LVAD PH, ALL

Parameter	Pre-LVAD (N = 48)	6 M Post-LVAD N= 48	1-2 aa Post-LVAD N= 26	> 2aa Post-LVAD N= 11
PAPm (mmHg)	41.1 ± 11.4	22.2 ± 7.1	24.1 ± 8	23.1 ± 7.4
PCWP (mmHg)	29.4 ± 9.8	13.6 ± 6.7	15.5 ± 6.7	14.2 ± 5
CI (l/min/m2)	1.6 ± 0.4	2.1 ± 0.4	2 ± 0.4	2.1 ± 0.2
TPG (mmHg)	11.6 ± 5.9	9.1 ± 4.4	8.2 ± 5	8.9 ± 3.1
PVR (WU)	4.1 ± 2.2	2.1 ± 1	2.1 ± 0.9	1.8 ± 0.5

Courtesy of A. Garascia

	Pre-LVAD n=			"fixed" PH, 14		/AD PH, 15
Parameter	Pre-LVAD	6 M Post	Pre-LVAD	6 M Post	Pre-LVAD	6 M Post
RAP (mmHg)	9 ± 3.8	n.a.	10.1 ± 4.7	8 ± 5.2	8.6 ± 4.6	11.5 ± 5.2
PAPm (mmHg)	41.1 ± 11.4	22.2 ± 7.1	42.8 ± 8.3	25 ± 7.4	37.8 ± 12	30 ± 7.3
PCWP (mmHg)	29.4 ± 9.8	13.6 ± 6.7	30.7 ± 7.3	16.7 ± 6.8	25.7 ± 9.5	21.2 ± 6.7
Cl (l/min/m2)	1.6 ± 0.4	2.1 ± 0.4	1.4 ± 0.3	2 ± 0.4	1.5 ± 0.3	2 ± 0.4
TPG (mmHg)	11.6 ± 5.9	9.1 ± 4.4	12 ± 6.1	8.3 ± 3.9	12.8 ± 6	11.5 ± 4.6
PVR (WU)	4.1 ± 2.2	2.1 ± 1	4.2 ± 2.2	2.1 ± 1	4.3 ± 2.2	2.4 ± 1

Courtesy of A. Garascia

Baseline hemodynamics, pre-LVAD

Parameter	LVAD, All (N= 59)	PH, All (N=48)	Non rev Pre-LVAD (N 14)	Non rev Post-LVAD (N=15)
PVC (mmHg)	7.6 ± 4.7	9 ± 3.8	10.1 ± 4.7	8.6 ± 4.6
PAPs (mmHg)	57.2 ± 18.2	64.1 ± 18.2	69.2 ± 12.6	60 ± 17.4
PAPd (mmHg)	23.5 ± 9.2	27 ± 9.1	27.9 ± 7	25.1 ± 9.2
PAPm (mmHg)	36.4 ± 11.9	41.1 ± 11.4	42.8 ± 8.3	37.8 ± 12
PCWP (mmHg)	25.7 ± 9.8	29.4 ± 9.8	30.7 ± 7.3	25.7 ± 9.5
CO (l/min)	3.2 ± 0.8	3 ± 0.7	2.7 ± 0.7	3.1 ± 0.8
Cl (l/min/m2)	1.68 ± 0.4	1.6 ± 0.4	1.4 ± 0.3	1.5 ± 0.3
TPG (mmHg)	10.5 ± 6	11.6 ± 5.9	12 ± 6.1	12.8 ± 6
PVR (WU)	3.7 ± 2.2	4.1 ± 2.2	4.2 ± 2.2	4.3 ± 2.2

Predictors of persistent PH post-LVAD

Variable	p-value
HF duration >8 years	0.4
PVR >3 UW	0.09
DPG > 0	0.06
PAC > 1.5	0.9
HM II	0.6
HVAD	0.4
Early RVF	0.02

- No Echo or RHC parameter significantly different between pts with / without postop RVF
- Related to early RVF
 - Ischemic etiology (61%) vs nonischemic (40%), p 0.04
 - Disease duration, 11 vs. 8 y, p 0.09
 - Bilirubin, 1.6 vs 1.2 mg/dl, p 0.08
 - Creatinine, 1.5 vs 1.1 mg/dl, p 0.02

PAH drugs for PH after LVAD? (personal viewpoint)

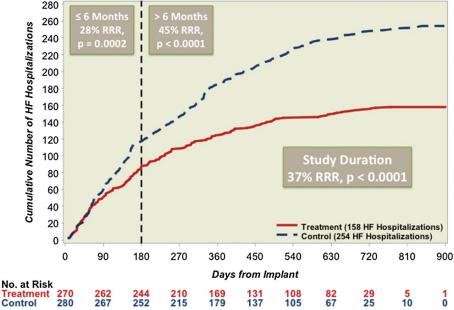
- Limited observational experiences, mostly with PDE-5 inhibitors
- Some (smaller) experiences with endothelinreceptors antgonists
- Inconsistent data on hemodynamic, clinical, and survival endpoints
- In clinical trials on PAH, the pure hemodynamic effects of these drugs are modest

The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10-year update

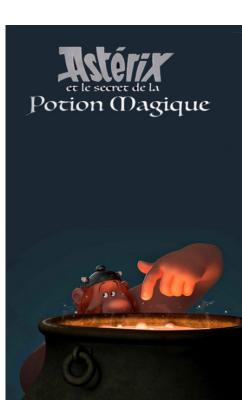
RECOMMENDATION	CLASS	LEVEL
Use of MCS should be considered for patients with pharmacologically irreversible pulmonary hypertension, with subsequent re-evaluation to establish candidacy	llb	С
RECOMMENDATION	CLASS	LEVEL
If medical therapy fails to achieve acceptable hemodynamics and if the LV cannot be effectively unloaded with mechanical adjuncts, including an intra-aortic balloon pump (IABP) and/or LVAD, it is reasonable to conclude that the pulmonary hypertension is irreversible.	IIb	C

GIORNATE CARDIOLOGICHE TORINESI

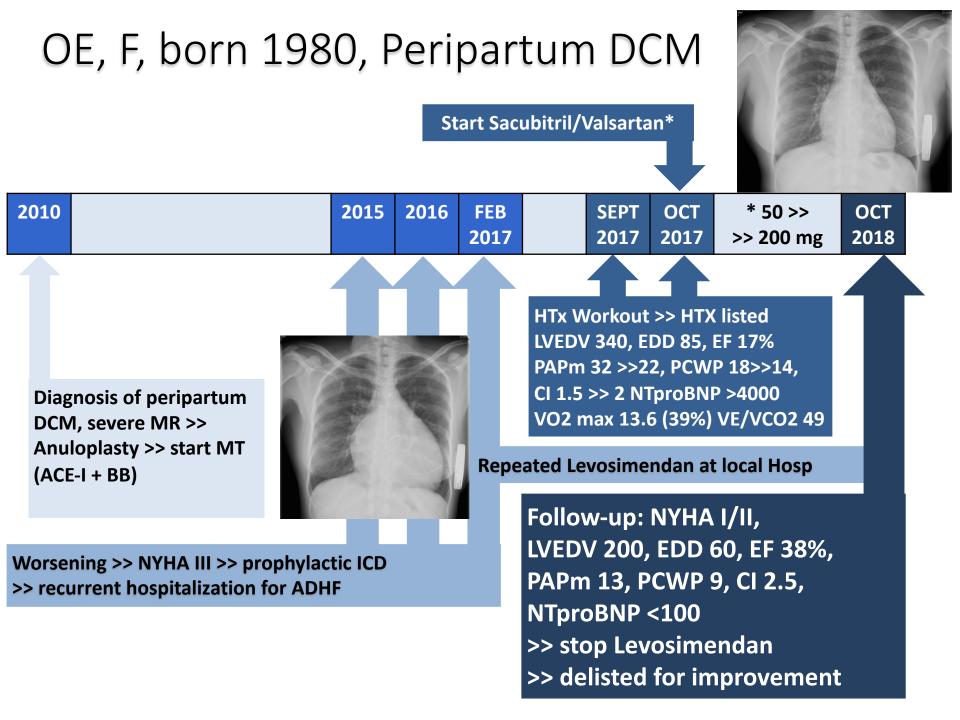
- PH in the setting of advanced HF with LV dysfunction
- PH as a risk factor for HTX
- PH reversibility for HTX candidacy: evaluation & maintenance
 - short-term strategies
 - long-term strategies
- LVAD for advanced HF with LV dysfunction & PH
- Post-HTX management of PH and RV dysfunction
- Perspectives


Perspective: Monitoring

- Current condition, unmet needs
 - RHC invasive and episodical
 - Noninvasive estimate (ECHO) inaccurate
 - Occasional measurements for critical decisions (to list or not to list)
- Perspective:
 - chronic hemodynamic monitoring: CardioMEMs (from occasional measurements to "PH burden"?)


CHAMPION RCT, 550 pts, Lancet 2011; 357:658

Perspective: Medical Therapy


- Current condition, unmet needs
 - i.v. Inotropic Therapy: symptomatic and hemodynamic improvement, survival benefit not shown, possible risks, temporary effectiveness
 - LVAD: high rate of complications, difficult to justify only for PH control
- Perspective:
 - Explore the potential of ARNI (Sacubitril/Valsartan) in advanced HF
 - Background: first drug with combined hemodynamic and neurohormonal effect, robust evidence of benefit in stable, less severe HF patients
 - Limitations: reverse remodeling has not been systematically studied; changes of natriuretic peptides are difficult to interprete
 - Risks: hypotension, renal insufficiency, inadequate titration

GC, born 1956, IHD, h 175 cm, w 94 Kg - listed for HTX 2013

Date Parameter	May 2013	May 2016, Baseline	ld. <i>,</i> + SNP	Oct 2017	Jan 2018*
Standard MT	Y	Y	Y	Stop ACE-I	Id
Levosimendan			Start		Stop
Sacubitril/ Valsartan				Start	154+156 mg
RAP, mmHg	2	6	2	2	1
PAP, S/D (M) mmHg	30/13 (19)	71/25 (41)	29/10 (17)	38/17 (24)	29/11 (18)
PCWP, mmHg	14	33	10	15	11
CI, l/min/m2	1.5	1.55	1.65	1.6	2.0
PVR, WU	1.5	2.6	2.1	2.8	1.7
SysBP, mmHg	105	115	105	120	110

*: CLINICALLY STABLE TO PRESENT

Summary

- 1. PH-LVD is common in advanced HF under consideration for HTX or LVAD
- 2. Drugs for PAH are not recommended in PH-LVD
- 3. Severe, resistant **PH is a major risk factor for HTX**, and a contraindication when deemed irreversible ("fixed")
- **4.** New insights on intra-patient variability and time course of PH could be provided by long term remote PAP monitoring (CardioMEMS)
- 5. In **HTX candidates with reversible PH**, suitability for HTX should be verified (**periodic RHC**) and actively pursued (**maintenance therapy**)
- 6. Repeated Levosimendan may be effective, at least for some months
- 7. LVAD is effective unless in case of RVF, or inadequate LV unloading, and may be used as a bridge or permanent therapy
- 8. The role of drugs for PAH after LVAD remains uncertain
- 9. The **possible role of Sacubitril/Valsartan** in PH-LVD deserves to be explored
- 10. Patients with PH-LVD and **small LV (restrictive model)** have earlier and more severe PH, and **limited maintenance options**, thus some **priority** for donor allocation may be justified.

GIORNATE CARDIOLOGICHE TORINESI

ACKNOWLEDGEMENTS

