

Gender and Spontaneous Coronary Artery Dissection

Rajiv Gulati, MD PhD Advances in Cardiac Arrhythmias and Great Innovations in Cardiology Torino, October 2015

Case: 42 year old female

- Fit with no risk factors
- V Fib arrest, full recovery, troponin+

Case: 42 year old female with ACS

Class I, LoE A

- DAPT
- Statin
- Stent

Case: 42 year old female with ACS

Spontaneous Coronary Dissection (and Hematoma)

<u>Issues</u>

- Why we are missing it
- Why it matters
- What might cause it

Why are we missing SCAD

In the cath lab, we assume every stenosis is atherosclerosis...

50 yr F with ACS

Why are we missing SCAD

We assume atherosclerosis...
...or spasm...

49 yr F with Torsades transient anterior ST-T changes

Why are we missing SCAD

We assume its atherosclerosis...
...or spasm...or we "diagnose"
normal coronaries

Different Case - 48 yr F ACS with "normal coronaries"

ACS with "normal coronaries"

Another ACS with "normal coronaries"

= SCAD, not myocarditis/spasm etc

Why are we missing SCAD

We assume atherosclerosis, spasm, normal coronaries... only if the patient actually gets to the cath lab

Three consecutive women, atypical pain, troponin+, Mayo ED last 9 mths

Triple r/o CT All negative

Why missed on CT?

- 1. Small vessel
- 2. "Motion artifact"
- 3. No athero, no interest

How common is SCAD?

Missed in ER

Missed in cath lab

Normal, athero, spasm, ABS, focal myocarditis, 1°VF

Missed at autopsy

Desai S et al, Am J Pathol 2012

Who gets SCAD, what causes it?

Spontaneous Coronary Dissection N=87 retrospective series

- Mean age 42.6, Female 82%
- High-risk presentation (STEMI 49%, VF 14%)
- Associations
 - V low prevalence of atheroscl risk factors
 - Post-partum 18% (now 8%)
 - Physical/emotional stressors
 - •

Fibromuscular Dysplasia The principal association

N=50 SCAD Angio/CTA/MRA

Saw J et al, JACC Intv 2013

FMD 86%

- Renal 58%
- Cervical 47%
- Iliac 49%

N=102 SCAD CTA neck-pelvis

Prasad M et al, AJC 2015

FMD or dissection 68%

- Renal 46%
- Cervical 49%
- Iliac 49%

SCAD

- Part of a systemic vasculopathy
- Linked with non-coronary FMD

What is the coronary abnormality that predisposes to SCAD?

Is it Coronary FMD?

Coronary FMD?

Coronary FMD?

Angiographic patterns in SCAD

First SCAD N = 246

Vs age gender HTN Controls N = 313

Angiogram consistent with coronary FMD 2% vs 0% p=0.02

Angiographic patterns in SCAD

First SCAD N = 246

Second SCAD new vessel N = 40 Prior FMD at site of new SCAD? 0/40

Irregularity (FMD?) at site of old SCAD: 19/40

Other angiographic observations?

MAYO CLINIC

429130-2

Corkscrew, multivessel symmetry

Prevalence of tortuosity

SCAD (n=246) vs Controls (n=313)

Coronary tortuosity in SCAD

- Highly prevalent. <u>Except</u> P-partum SCAD
- No more prevalent in hypertensive SCAD
- Much more prevalent in FMD+ vs screen negative CTA (p<0.001)
- Tort. Index > 5 predicts recurrent SCAD
- 80% of second SCAD (new vessel, n=40) occurred in segments of prior tortuosity

First case 42 yrs Female So should we stent the LAD?

How does SCAD respond to PCI?

©2011 MFMER | slide-35 FMER | 3429130-35

©2011 MFMER | Slide-37 MFMER | 3429130-37

©2011 MFMER | Slide-38 15 MFMER | 3429130-38

©2011 MFMER | slide-39 MFMER | 3429130-39

©2011 MFMER | Slide-40 MFMER | 3429130-40

©2011 MFMER | Slide-41 FMER | 3429130-41

©2011 | MFMER | slide-42 3429130-42

PCI vs Conservative Rx for SCAD A retrospective, biased study

	PCI vessel occlusion (n=46)	PCI normal flow (n=41)	Conservative (n=94)
In-hospital outcomes			
Death	2%	0	0
Emergent CABG	17%	15%	4%
Extension Rx PCI	0	0	6%
Extension Rx consv	3%	3%	2%
PCI technical failure	27%	47%	NA

Failures: - Unable to enter TL with wire
- Loss of flow after stent
No angiographic predictors of PCI success

Target Vessel Revascularization

Recurrent SCAD in 18%

SCAD pathogenesis Hypothesis, from clinical observations

Vulnerable wall

Media – outer 2/3
Overlap with FMD
Tortuosity signature
Absence of athero

Systemic trigger

Hormonal
Shear stress
Other

Spontaneous Coronary Artery Dissection in 2015

- Under-recognized cause of MI in females
- Coronary tortuosity
- Vascular FMD
- Manage conservatively if possible
- Follow closely, 1:6 risk of recurrence
- Vulnerable wall+ trigger hypothesis:
 studies underway

Thank you for your time

Tortuosity quantification and index

- End-diastole
- Vessels ≥ 2 mm diameter

SCAD pathophysiology

- Part of a systemic vasculopathy
- Coronary architectural abn is unclear
- Characterized by coronary redundancy
 - Diagnostic clue
 - Prognostic marker
 - May be involved in pathogenesis
- Characterized by angiographic healing if left alone vs adverse response to PCI

Any other clues on mechanism?

Vulnerable wall Medial hematoma ←→ Intimal dissection

- N=8/9 near-normal endothelial function
- N=46 recurrent SCAD: 80% occur in segments of prior tortuosity

SCAD Left main

How common is SCAD as a cause of sudden death?

N=150 sudden death, age < 35

- Coronary disease N = 48
- Non-atherosclerotic N = 16

Corrado D et al, BHJ 1992

N= 50 non-athero coronary disease

- Coronary anomaly N = 24
- Spontaneous dissection N = 10

Hill SF et al, Heart 2010

N= 9 sudden death from SCAD

Initial pathology "normal" in N=4

"The macroscopic changes...can be difficult to detect and mistaken for postmortem thrombus or athero..."

Any role at all for PCI in SCAD with preserved flow?

Can we learn from natural history of SCAD?

How to manage acute SCAD

Based on retrospective evaluation of selection-biased and survivor-biased data, plus anecdotes, last-case recall and mechanistic speculation:

- Single antiplatelet, beta-blocker, avoid statin
- Conservative, but observe for 4-5d
- Recognize that pain often ≠ ischemia
- Restore flow & don't worry how it looks
- Role for decompression PCI?
- Index CABG: Good acute outcomes, but v high rate of late graft occlusion

52 year old female

52 year old female

52 year old female

