Echocardiographic-fluoroscopic fusion imaging for transcatheter mitral valve repair guidance

Francesco Faletra

J Am Soc Echocardiogr 2007;20:1131-1140

Use of Real Time Three-Dimensional Transesophageal Echocardiography in Intracardiac Catheter Based Interventions

Conclusion: RT3D TEE is a powerful new imaging tool that may become the technique of choice and the standard of care for guidance of selected percutaneous catheter-based procedures. (J Am Soc Echocardiogr 2009;22:865-82.)

Methods: The authors used RT3D TEE to guide 72 catheter-based cardiac interventions. The procedures included the occlusion of atrial septal defects or patent foramen ovales (n = 25), percutaneous mitral valve repair (e-valve clipping; n = 3), mitral balloon valvuloplasty for mitral stenosis (n = 10), left atrial appendage obliteration (n = 11), left atrial or pulmonary vein ablation for atrial fibrillation (n = 5), percutaneous closures of prosthetic valve dehiscence (n = 10), percutaneous aortic valve replacement (n = 6), and percutaneous closures of ventricular septal defects (n = 2). In this review, the authors describe their experience with this technique, the added value over multiplanar two-dimensional TEE, and the pitfalls that were encountered.

Results: The main advantages found for the use RT3D TEE during catheter-based interventions were (1) the ability to visualize the entire lengths of intracardiac catheters, including the tips of all catheters and the balloons or devices they carry, along with a clear depiction of their positions in relation to other cardiac structures, and (2) the ability to ability to demonstrate certain structures in an "en face" view, which is not offered by any other currently available real-time imaging technique, enabling appreciation of the exact nature of the lesion that is undergoing intervention.

Conclusion: RT3D TEE is a powerful new imaging tool that may become the technique of choice and the star astronomy and the star dard of care for guidance of selected percutaneous catheter-based procedures. (J Am Soc Echocardio 2009:22:865-82.)

STATE-OF-THE-ART PAPER

3D TEE During Catheter-Based

Limitations of the dual approach (2D/3D TEE and fluoroscopy)

- Two separates monitors
- Need of repeatedly and sequentially interrogate the two monitors
- Imaging data sets shown in different
 orientations
- Lack of optimal eye-hand coordination

All (images) in one (screen)

Fusion imaging

Echo and fluoroscopy are based on different physical principles *(ultrasound mechanical waves versus electromagnetic waves)* and remarkable differences in imaging generation *(echoes versus attenuation)*.

They fit well when fused together in a single "hybrid" image because:

- Both are real-time and complementary imaging techniques:
- Catheters and devices are better visualized by fluoroscopy
- Soft tissues are better visualized by echocardiography

Fusion imaging Co-registration: integration in space and time

Fusion or

confusion?

Tools can avoid

confusion

Fusion or confusion? Tools: transparency

Were is the tip of my catheter ?

Confusion

I will show you in a second.....

Ha… I see it

Fusion

...It's here...

Transseptal puncture

Transseptal puncture Site-Specific

Transseptal puncture Site-Specific

Transseptal puncture Site-Specific

RAO 30°

LAO 30°

Advancement of clip delivery system into the LA

Advancement of clip delivery system into LA

Positioning the clip delivery system perpendicular to MV orifice

Positioning the clip delivery system perpendicular to MV orifice

Positioning the clip delivery system over the regurgitant jet

Positioning the clip arms perpendicular to the coaptation line

Positioning the clip arms perpendicular to the coaptation line

Grasping

Grasping

After any clip

Residual mitral regurgitation

Gradient

Key questions

When compared with traditional 2D or 3D TEE guidance, does this novel technology add advantages in terms of *reduction* of procedural time, radiation exposure, incidence of complications ?

Does it increase operator's confidence?

Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during MitraClip interventions

Simon H. Sünder Christian Felix³, 1

 Division of Cardie Hospital Zurich, Zur
 Institute of Anaes

S. H. Sündermann and

This paper also includ

KEYWORDS

EchoNavigator
MitraClip
mitral valve disea
percutaneous mitral valve repai
real-time fusion
structural heart disease interventions

	Total (n=42)	with EchoNavigator (n=21)	without EchoNavigator (n=21)	p
Number of clips implanted, n (%)	81 (100%)	45 (56%)	36 (44%)	0.3
Patients with 1/2/3/4 clips (n)	12/23/5/2	4/12/3/2	8/11/2/0	_
Length (minutes) all patients	131±50.3	136.2±50.2	125.7±51.2	0.5
Length (minutes) patients ≤2 clips	112.7±26.8	113.9±29.9	111.8±24.9	0.8
Fluoroscopy time (minutes) all patients	31.4±15.8	32.3±16.8	30.6±15.3	0.8
Fluoroscopy time (minutes) patients ≤2 clips	25.1±7.1	23.9±8.1	26.1±6.4	0.4
Radiation dose (Gy/cm ²) all patients	146.7±127.4	146.5±123.6	146.8±134.1	1.0
Radiation dose (Gy/cm²) patients ≤2 clips	112.8±73	102.1±65	119.8±78.9	0.5
Time to first clip (minutes)	53.6±15.8	52.4±17.6 (n=21)	53.7±14.0 (n=21)	0.8
Time to second clip (minutes)	85.7±27.7	83.2±27.4 (n=17)	88.9±29.0 (n=13)	0.6
Time to third clip (minutes)	152.86±47.5	134.2±23.2 (n=5)	199.5±72.8 (n=2)	0.4

The numbers in brackets indicate the number of patients who had implantation of one, tw or three clips in the respective group. Gy: gray Gessat^{1,4}, PhD; rti², MD, PhD

diology, University h, Zurich, Switzerland;

ention/69th_issue/203

clands) enables real-time raphy probe on the x-ray x MitraClip procedures.

Navigator software (EN+ dpoints were fluoroscopy ents treated immediately i6) were implanted in the radiation dose (Gy/cm²) procedure time (minutes) p=0.5). The main benefit toroscopy, leading to eas-

Conclusions: The use of EchoNavigator software was feasible and safe in all study patients. Further studies are necessary to confirm the benefits of using this software.

fo

Echo Table 2 Unpublished data from University Heart Center Zurich on procedural length, fluoroscopic time, and radiation dose with a without fusion

' tr	Mitral clip	With fusion	Without fusion	P-value
	Degenerative/functional	11/8	11/8	
	1, 2, and 3 clips	9/9/1	9/9/1	
cesc	Procedural length (min \pm ds)			
Bia	1 clip	56 ± 20	61 ± 15	0.25 ns
2	2 clips	65 ± 16	75 ± 21	0.12 ns
ita',	3 clips	99 ± 35	108 ± 43	0.51 ns
icno	Fluoroscopy time (min \pm ds)			
ispa	1 clip	18±7	17 ± 7	0.7 ns
	2 clips	22±6	23 ± 10	0.41 ns
ent of Ca	3 clips	31 ± 15	33 ± 19	0.93 ns
Universit	Radiation dose (Gy/cm ² \pm ds)			
February	1 clip	25 ± 12	24 ± 15	0.61 ns
	2 clip	31 ± 15	32 ± 19	0.73 ns
	3 clip	66 ± 21	70 ± 19	0.71 ns
	Cardioband	With fusion	Without fusion	<i>P</i> -value
ocardic	Procedural length (min ± ds)	143 ± 36	125 ± 21	0.41 ns
athete	Fluoroscopy time (min \pm ds)	47 ± 12	52 ± 9	0.61 ns
velopm	Radiation dose $(Gy/cm^2 \pm ds)$	36 ± 28	40 ± 31	0.85 ns
lve tra	Paravalvular leak	With EchoNav (2)	Without EchoNav (2)	P-value
the rc		2	2	1 ns
id the f	Procedural length (min \pm ds)	128 ± 11	115 ± 35	0.65 ns
	Fluoroscopy time (min \pm ds)	83 ± 27	86 ± 36	0.9 ns

Keywords

transoesophageat echocardiography • nuoroscopy • mitrat valve repair • iusion images

Ig

Fusion Imaging *Future scenarios Valve modeling*

Courtesy of Philip

Echocardiographic-fluoroscopic fusion imaging ator mitral valvo ropair quida for tra

Francesco Luigi Biasc Kuwata³, M Nietlispach

¹Department of Cardic Italy; and ³University H Received 7 February 201

The echocardiogr cilitate catheters early developmen mitral valve transc describe the role ciples and the fluc

Keywords

Conclusion

Echocardiograpy-fluoroscopic fusion imaging couples two 'real-time' imaging techniques showing in the same screen a sort of 'hybrid image' where soft tissues appear onto the fluoroscopic cardiac silhouette. This new imaging modality has the potential to become the main imaging technique in catheter-based SHD interventions. However, the absence of data showing a reduction in terms of procedural and fluoroscopic times, radiation exposure and improved outcomes, hampers its clinical applicability. Though new approach to fusion imaging from different manufactures are likely to emerge in the near future, the fact that this imaging modality is currently provided by a single vendor limits its more widespread use, experience and data collection.

dotti³, Igo

nce

na 60, 20132 Milan,

he proposal to faave described the ing technology to ew, we, therefore, The technical prin-

Take home message

- Without fusion...
- interventional
- cardiologists...
- "Oculos habent et non

videbunt...."

New advent Bible:

Salm 114/115

Thank you for your patience francesco.faletra@cardiocentro.org