"Aortic Arch and Thoraco-Abdominal Aortic Disease

Side branch stent-grafts: materials and results

Mauro Gargiulo

Vascular Surgery University of Bologna - DIMES University Hospital Policlinico S.Orsola Bologna, Italy mauro.gargiulo2@unibo.it

"Aortic Arch and Thoraco-Abdominal Aortic Disease Side branch stent-grafts: materials and results

Disclosure

Speaker name: Prof. Mauro Gargiulo

I have the following potential conflicts of interest to report:

X Consulting: Cook Medical

X PI Expand Registry

Employment in industry

Stockholder of a healthcare company

Owner of a healthcare company

Other(s)

Branched endografts for thoracoabdominal aneurysms

R Greenberg. J Thorac Cardiovasc Surg 2010

Endovascular repair of 406 TAAA

	Endo*	Open (%)	р
SCI	4.3	7.5	0.08
30-d Mortality	5.7	8.3	0.2
1-yr Mortality	15.6	15.9	0.9

*: 9 yrs older and sicker patients

The impact of Early Pelvic-Lower Limb Reperfusion & attentive peri-operative management on incidence of SCI during TAAA Endovascular Repair

	G1*	G2	Tot
ТААА	43	161	204
	%	%	р
30-d mortality	11.6	5.6	0.09
SCI	14	1.2	<0.01
SCI (TAAA I,II,III)	25	2.1	<0.01

* : patients treated before the protocol

B Maurel, European Journal of Vascular Surgery 2015

Ten-year experience with endovascular repair of thoracoabdominal aortic aneurysm repair Results from 166 consecutive patients

E Verhoeven, European Journal of Vascular Surgery 2015

	n	%
Technical Success	157	95
SCI	15	9
30-d Mortality	13	8
In hospital Mortality	15	9
	mean	SD
F-up (months)	29	21

Endovascular Repair of TAAA using fenestrated and branched endograft

G Oderich, J Thorac Cardiovasular Surg 2017

185 cases	%
30-day Mortality	4
Paraplegia	3
Permanent Dialysis	1
Myocardial Infarction	5
Respiratory Failure	5
Renal Failure	11

Endovascular Repair of TAAA using fenestrated and branched endograft

G Oderich et al. J Thorac Cardiovascular Surg 2017

Survival

@ 1-yr	92% (type IV)	$vs \ 81\% \ (\text{type I-III})$
@ 3-yr	72%	vs 65%
@ 5-yr	59%	vs 56%

Freedom from Re-interventions

@ 1-yr	80% (type	e IV) VS 62% (type I-II	I)
@ 3-yr	54%	vs 62%	
@ 5-yr	50%	vs 53%	

Endovascular repair of thoraco-abdominal aortic aneurysms by fenestrated and branched endografts[†]

Enrico Gallitto*, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Cecilia Fenelli, Andrea Stella and Mauro Gargiulo

European Journal of Cardio-Thoracic Surgery 56 (2019) 993-1000

Fenestrated or branched endovascular aortic repair for postdissection thoracoabdominal aortic aneurysm

Yuk Law, FRCS,^{a,b} Nikolaos Tsilimparis, MD,^a Fiona Rohlffs, MD,^a Vladimir Makaloski, MD,^a Christian-Alexander Behrendt, MD,^a Franziska Heidemann, MD,^a Sabine Helena Wipper, MD,^a Eike Sebastian Debus, PhD,^a and Tilo Kölbel, PhD,^a Hamburg, Germany; and Hong Kong, People's Republic of China

(J Vasc Surg 2019; :1-9.)

Mean aneurysm diameter

Bifurc, Bifurcated graft; Br, branch; CA, celiac artery; Fen, fenestration; R., false lumen; IBD, iliac branched device; LRA, le RRA, right renal artery, SMA, superior mesenteric artery, TL, true lumen; uBr, upward branch.

Total Endovascular Repair of Contained Ruptured Thoracoabdominal Aortic Aneurysms

Enrico Gallitto,¹ Gianluca Faggioli,¹ Rodolfo Pini,¹ Chiara Mascoli,¹ Antonio Freyrie,² Vincenzo Vento,¹ Stefano Ancetti,¹ Andrea Stella,¹ and Mauro Gargiulo,¹ Bologna and

Features	n (%)
Technical success	11 (92)
TVV patency at completion angiography	33/34 (97)
SCI	2 (17)
Cardiac morbidity	1 (8)
Pulmonary morbidity	3 (25)
New onset of dialysis	1 (8)
Minor stroke (parallel graft)	1 (8)
Cerebral hemorrhage (custom-made FB-	1 (8)
EVAR)/no postoperative sequelae	
30-Day mortality	2 (17)
respiratory failure (T-branch)	
cardiac failure (parallel graft)	
In-hospital mortality (included 30-day mortality)	3 (25)

Table III. Intraoperative and Perioperative data

Ann Vasc Surg 2019; 58:211-21

Impact of previous open aortic repair on the outcome of thoracoabdominal fenestrated and branched endografts

Enrico Gallitto, MD, PhD, Gianluca Faggioli, MD, PhD, Chiara Mascoli, MD, Rodolfo Pini, MD, Stefano Ancetti, MD, Andrea Vacirca, MD, Andrea Stella, MD, PhD, *and* Mauro Gargiulo, MD, PhD, *Bologna, Italy*

(J Vasc Surg 2018;68:1667-75.)

Table II. Thoracoabdominal aortic aneurysms (TAAAs)Crawford's distribution in group A and B

Crawford's type	Overall	Group A	Group B
T	1	1	-
П	14	7	7
III	24	12	12
IV	23	10	13
Total	62	30	32

- Take Home Message: Fenestrated and branched endovascular repair of thoracoabdominal aortic aneurysms in 62 patients resulted in similar rates of technical success (92%), 30-day mortality (5%), 2-year visceral artery patency (91%), and 2-year survival (60%) in patients with and without previous open aortic repair.
- Recommendation: This study suggests that previous open surgical repair does not negatively impact outcomes following fenestrated and branched endovascular repair of thoracoabdominal aortic aneurysms.

Survival

Patency of TVVs

Endovascular repair of thoraco-abdominal aortic aneurysms by fenestrated and branched endografts[†]

Enrico Gallitto*, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Cecilia Fenelli, Andrea Stella and Mauro Gargiulo

European Journal of Cardio-Thoracic Surgery 56 (2019) 993-1000

TAAA 88

Key question Is endovascular repair of thoracoabdominal aneurysms (TAAAs) by fenestrated/branched endograft (FB-EVAR) safe and effective in high-risk patients? Key finding(s) 30-Day hospital mortality rate: 5%-8%; Paraplegia: 3%; Cardiopulmonary morbidity: 8%-14%; Dialysis: 2%; Survival rate at 3 years: 70%. Take-home message FB-EVAR for TAAAs is safe and effective. It could be the first therapeutic option in high-risk patients with anatomical feasibility.

TAAA Endovascular Repair

Reinforced Fenestration

- J/P-AAA
- Type IV TAAA
- Renal arteries

Side-Arm branches

- Type I, II, III TAAA
- Aortic $\emptyset > 35 \text{ mm}$

Greenberg R. et al. J Thorac Cardiovasc Surg 2010

TAAA Endovascular Repair

Endograft

Custom-Made

Off-the-shelf

Vascular Surgery – University of Bologna

Endovascular repair of thoraco-abdominal aortic aneurysms by fenestrated and branched endografts[†]

Enrico Gallitto*, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Cecilia Fenelli, Andrea Stella and Mauro Gargiulo

European Journal of Cardio-Thoracic Surgery 56 (2019) 993-1000

- TVV 317
- Fenestrations vs branched Endograft

•	Endograft with branches	35%
•	Endograft with fenestration	51%
•	Endograft with branched and fenestration	14%

- Endograft Configuration
 - Custom made endograft 68%
 - Off the shelf endograft 32%

The different effect of branches and fenestrations on early and long-term visceral vessel patency in complex aortic endovascular repair

Rodolfo Pini, MD, Gianluca Faggioli, MD, Enrico Gallitto, MD, Chiara Mascoli, MD, Cecilia Fenelli, MD, Stefano Ancetti, MD, Andrea Vacirca, MD, *and* Mauro Gargiulo, MD, *Bologna, Italy*

(J Vasc Surg 2019; ∎:1-7.)

Our approach was:

- fenestration or side branches according to the aortic anatomy and not the type of vessel
- if the aortic lumen diameter is < 30 mm, we have generally preferred **fenestration**, because the bridging stent will usually be relatively short and this type of configuration allows for shorter coverage of the proximal healthy aorta
- in the case of a larger aortic lumen diameter, **side branches** will lead to easier vessels cannulation.

Impact of previous open aortic repair on the outcome of thoracoabdominal fenestrated and branched endografts

Enrico Gallitto, MD, PhD, Gianluca Faggioli, MD, PhD, Chiara Mascoli, MD, Rodolfo Pini, MD, Stefano Ancetti, MD, Andrea Vacirca, MD, Andrea Stella, MD, PhD, *and* Mauro Gargiulo, MD, PhD, *Bologna, Italy*

(J Vasc Surg 2018;68:1667-75.)

Table IV. Literature experiences (with >150 cases) reported in the last years by high-volume centers for fenestrated and branched endovascular repair (FB-EVAR) repair: Perioperative results

Authors	Patients, No.	Technical success, %	30-day mortality, %	SCI, %
Greenberg et al ¹⁷	406	-	5.7	4.3
Maurel et al ¹⁸	204	92.6	6.9	3.9
Verhoeven et al ¹⁹	166	95.0	8.0	9.0
Eagleton et al ²⁰	354	94.0	4.8	8.8
Oderich et al ²¹	185	94.0	4.3	3.0
SCI, Spinal cord ischemia.				

 Table V. Literature experiences (with >150 cases) reported in the last years by high-volume centers for fenestrated and branched endovascular repair (FB-EVAR) repair: Follow-up results

Authors	Months of follow-up, mean \pm SD	Survival, % at 24-month	TTV-patency, % at 24 months	FFR, % at 24 months
Greenberg et al ¹⁷	-	_	-	—
Maurel et al ¹⁸	-	-	-	-
Verhoeven et al ¹⁹	29 ± 19	78	97	98
Eagleton et al ²⁰	23 ± 19	68	92, 98, 97 ^a	64
Oderich et al ²¹	21 ± 20	68 ± 5/72 ± 6 ^b	95	62

FFR, Freedom from reinterventions; TTV, target visceral vessels.

^aPercentages referred to renal artery, superior mesenteric artery, and celiac trunk, respectively.

^bPercentages referred to type I-III and type IV thoracoabdominal aortic aneurysms (TAAAs), respectively.

The different effect of branches and fenestrations on early and long-term visceral vessel patency in complex aortic endovascular repair

Rodolfo Pini, MD, Gianluca Faggioli, MD, Enrico Gallitto, MD, Chiara Mascoli, MD, Cecilia Fenelli, MD, Stefano Ancetti, MD, Andrea Vacirca, MD, *and* Mauro Gargiulo, MD, *Bologna, Italy*

Endovascular repair of thoraco-abdominal aortic aneurysms by fenestrated and branched endografts[†]

Enrico Gallitto*, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Cecilia Fenelli, Andrea Stella and Mauro Gargiulo

European Journal of Cardio-Thoracic Surgery 56 (2019) 993-1000 **TAAA 88** TVV patency 1,0-0,8 **Risk Factors** Sig 95% CI OR 0,6 **TVV-s** occlusion 0,4-**Renal artery** .017 13.3 1.6 - 110.3 0,2-**Branch design** .015 7.3 1.47 - 36.8 0,0months 80 20 40 60 100 ó time 2 year 1 year 3 years % 92 92 92 72 22 n 34 SE 02 03 05

Renal Artery Orientation Influences the Renal Outcome in Endovascular Thoraco-abdominal Aortic Aneurysm Repair $\stackrel{}{\sim}$

Enrico Gallitto^{*}, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Mohammad Abualhin, Andrea Stella, Mauro Gargiulo

Figure 2. RA orientation was classified into three types according to axial view: I (lateral), II (posterior), III (anterior).

Figure 3. For any doubts, stenosis, kinking, or acute angles in the transition between the distal end of the visceral stent graft and renal artery, relining by a self expandable stent graft was performed.

Figure 4. Intra-operative images of thoraco-abdominal endovascular repair by branched endograft. Multiple attempts to advance materials (stiff guidewire and introducer) inside an upward right renal artery. Upward renal artery orientation was an independent risk factor for intra-operative RN loss.

Renal Artery Orientation Influences the Renal Outcome in Endovascular Thoraco-abdominal Aortic Aneurysm Repair $\stackrel{\scale}{\sim}$

Enrico Gallitto^{*}, Gianluca Faggioli, Rodolfo Pini, Chiara Mascoli, Stefano Ancetti, Mohammad Abualhin, Andrea Stella, Mauro Gargiulo

Table 9. Overall composite renal artery events.

	п
Intra-operative RA lesion	4
RA loss	10
RA related re-interventions	5
RA occlusion	4

Type B (p = .05; OR 3.9; 95% Cl 1.1-

15.7) or D (p = .006; OR 10.9; 95% Cl 2.3–50.8) RA orientations and branches (p = .006; OR 5.7; 95% Cl 1.6–20.3) were independent predictors of composite RA events on multivariable analysis.

On multivariable analysis, type B RA orientation (p = .03; OR 5.9; 95% Cl 1.1-31.1) and branches (p = .03; OR 7.3; 95% Cl 1.1-47.9) were independent risk factors for intra-operative RA loss

gure 1. RA orientation was classified into four types according to the volume rendering and coronal view: A (horizontal), B (upward), C ownward), D (downward + upward).

Figure 2. RA orientation was classified into three types according to axial view: I (lateral), II (posterior), III (anterior).

First/Preliminary Experience of Gore Viabahn Balloon-Expandable Endoprosthesis as Bridging Stent in Fenestrated and Branched Endovascular Aortic Repair

Enrico Gallitto,¹ Gianluca Faggioli,¹ Rodolfo Pini,¹ Chiara Mascoli,¹ Alessia Sonetto,¹ Mohammad Abualhin,¹ Antonino Logiacco,¹ Jean-Baptiste Ricco,² and Mauro Gargiulo,¹ Bologna, Italy and Poitiers, France

Ann Vasc Surg 2019; epub

Table IV. Anatomical distribution of the aortic

lesion

Aortic lesion	п	%
	10	
J/p-AAA	10	66
TAAA	3	20
EL Ia post standard EVAR	1	7
AAA + IAA	1	7

AAA + IAA, infrarenal abdominal and iliac aneurysms; EL Ia post standard EVAR, proximal type I endoleak after a standard EVAR.

Table V. Details of TVV accommodation by branch, fenestration, or scallop.

	CT	SMA	RA	HA	Total
Branches	1	1	2	3	7
Fenestrations	11	12	28	0	51
Scallops	2	0	0	0	2
Total TVVs	14	13	30	3	60

CT, celiac trunk; HA, hypogastric artery; RA, renal artery.

Methods.

Between 2010 and 2019, all TAAAs undergoing FB-EVAR were prospectively collected. Preoperative, procedural and post-operative data of RAs accommodated by branch design and patent at the completion angiography, were retrospectively analyzed. Hostile renal artery anatomy included upward (typeB) and downward + upward (typeD) orientations.

Type B and D RAs treated by the combination of SE+BE stent-graft as bridging stent (BE+SE group), were compared with RAs treated by balloon expandable stent-graft only (BE-group). Renal artery occlusion, reinterventions and branch instability were assessed.

Gallitto E et al J Endovasc Ther 2019 in press

Table 1. Bridging stent-grafts used in SE+BE and BE groups.

	BE - group	SE+BE - group	Overall
Atrium Advanta	19*	27	46
Gore VBX	2	13	15
Gore Viabahn	-	40	40
Overall	21	80	101

"Aortic Arch and Thoraco-Abdominal Aortic Disease

Side branch stent-grafts: materials and results

Take-Home Message

- The total endovascular treatment of TAAA is evolving
- Short-mid term results seem encouraging endovascular treatment of TAAA
- Side-Branch stent-grafts:
 - in case of a larger aortic lumen diameter at the level of visceral vessels
 - renal arteries revascularization with BE in type A-C renal arteries anatomy and with BE+SE in type B-D renal artery anatomy.

