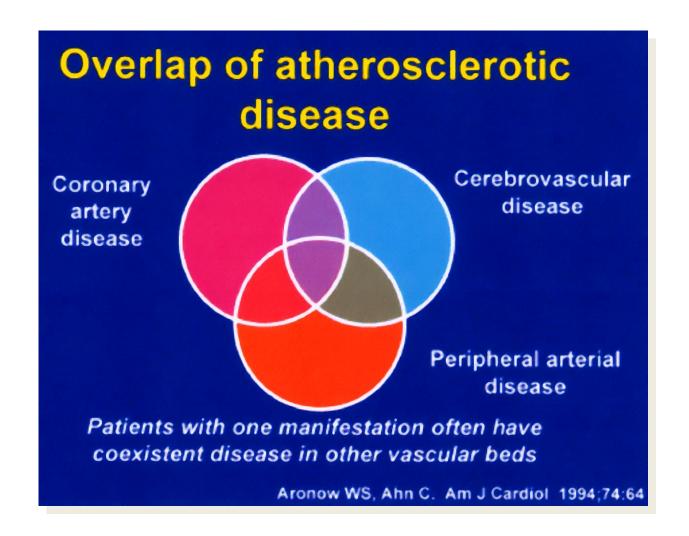


31 GIORNATE CARDIOLOGICHE TORINESI

Carotid screening for coronary artery disease and vice-versa, add value or added risks?

Fausto Castriota MD, FESC

Responsabile Interventistica Cardiovascolare e Strutturale Humanitas Gavazzeni Bergamo Italy


Potential conflicts of interest

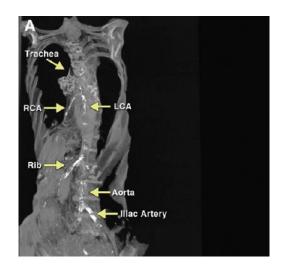
Speaker's name: Fausto Castriota

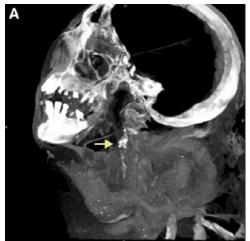
☑ I have the following potential conflicts of interest to report:

Consultant Institutional grant/research support/ proctor : ABBOTT VASCULAR, MEDTRONIC, TERUMO, BOSTON SCIENTIFIC

Background

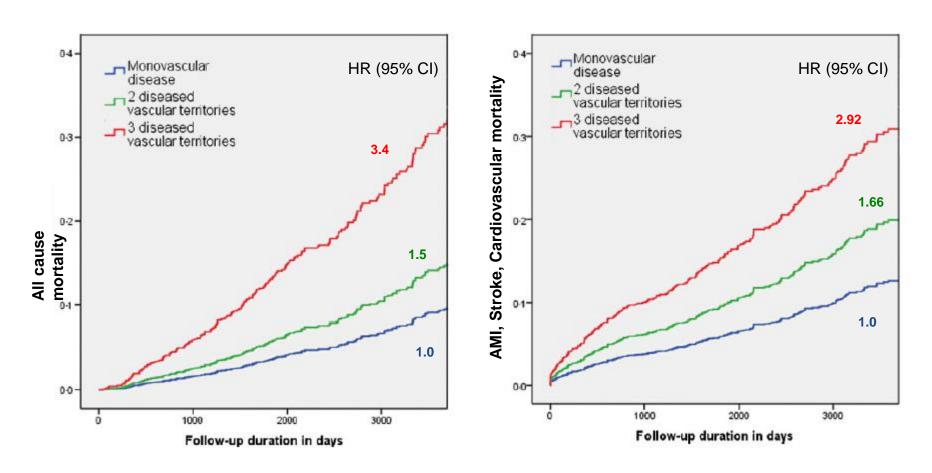
JACC: CARDIO VASCULARIMAGING, VOL.4, NO.4, 2011:315-27




45 anni.

Stretta aderenza alla dieta mediterranea, astinenza da fumo, grassi saturi e zuccheri. Stile di vita tranquillo, non stressante.

Ahmose-Meryet-Amon Principessa Egiziana vissuta tra il 1580 e il 1530 a.C.



Aterosclerosi Multidistrettuale: PROGNOSI

<u>Territories evaluated</u>: cerebrovascular disease, peripheral arterial disease, abdominal aortic aneurism, vascular renal disease

Coronary and Carotid

- In patients with severe coronary artery disease referred for cardiac surgery:
 - 15 to 25% have carotid stenosis >50%,
 - 5 to 15% have stenosis >80%.
- Such percentages may range from 5% in subjects with a single coronary artery stenosis, to 25% in patients with three-vessel coronary artery disease, up to 40% in patients with a severe lesion of the left main trunk 1.

¹⁾ Eagle K, Guyton R, Davidoff R et al. ACC/AHA 2004 Guideline update for coronary artery bypass graft surgery: summary article. J Am Coll Caridol 2004; 2004; 44: 1146-1154

²⁾ Simons PG, Algra A, Eikelboon BC, et al. Carotid artery stenosis in patients with peripheral artery disease. The SMART study. J Vasc Surg 1999; 30: 519-525

³⁾ House AK, Bell R, House J, et al. Asymptomatic carotid artery stenosis associated with peripheral artery disease: a prospective study. Cardiovasc Surg 1999; 7: 44-49

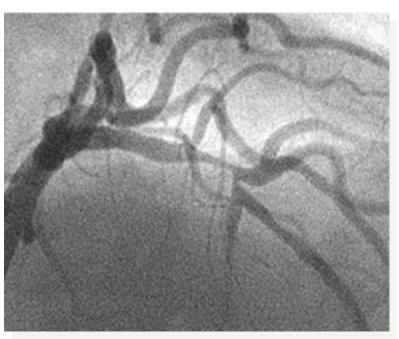
MULTISITE ARTERY DISEASE

DEFINITION: simultaneous presence of clinically relevant atherosclerotic lesions in at least two major vascular territories

PREVALENCE: higher than expected and probably underdiagnosed; increases in parallel with life expectancy

PROGNOSIS: poorer prognosis

BUT...


NO RANDOMIZED TRIALS HAVE BEEN DESIGNED TO COMPARE DIFFERENT TREATMENT STRATEGIES

CONSEQUENTLY...

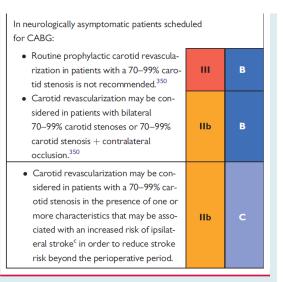
TREATMENT STRATEGY SHOULD BE CHOSEN INDIVIDUALLY, CONSIDERING THE OVERALL CLINICAL STATUS OF THE PATIENT, TAKING INTO ACCOUNT THE PRESENCE OF CARDIOVASCULAR RISK FACTORS AND CO-MORBIDITIES

Patients with combined carotid and coronary artery disease

What we need to know about.....

Recommendations on screening for carotid disease in patients undergoing coronary artery bypass grafting

Recommendations	Class ^a	Level ^b
In patients undergoing CABG, DUS is recommended in patients with a recent (<6 months) history of TIA/stroke. ^{345,358}	1	В
In patients with no recent (<6 months) history of TIA/stroke, DUS may be considered in the following cases: age ≥70 years, multivessel coronary artery disease, concomitant LEAD or carotid bruit. 345,358	IIb	В
Screening for carotid stenosis is not indicated in patients requiring urgent CABG with no recent stroke/TIA.	Ш	С


CABG = coronary artery bypass grafting; DUS = duplex ultrasound; LEAD = lower extremity artery disease; TIA = transient ischaemic attack.

^aClass of recommendation.

^bLevel of evidence.

Recommendations on the management of carotid stenosis in patients undergoing coronary artery bypass grafting

Recommendations	Class ^a	Level ^b
It is recommended that the indication (and, if so, the method and timing) for carotid revascularization be individualized after discussion within a multidisciplinary team, including a neurologist.	1	C
In patients ith a recent (comonths) history of are scheduled for CABG:	of TIA/stro	ke who
 Carotid revascularization should be considered in patients with 50–99% carotid stenosis.^{359,360} Carotid revascularization with CEA should be considered as the first choice in patients with 50–99% carotid stenosis.^{359,360} 	lla	В
 Carotid revascularization is not recom- mended in patients with carotid stenosis <50%. 	Ш	С

CABG = coronary artery bypass grafting; CAS = carotid artery stenting; CEA = carotid endarterectomy.

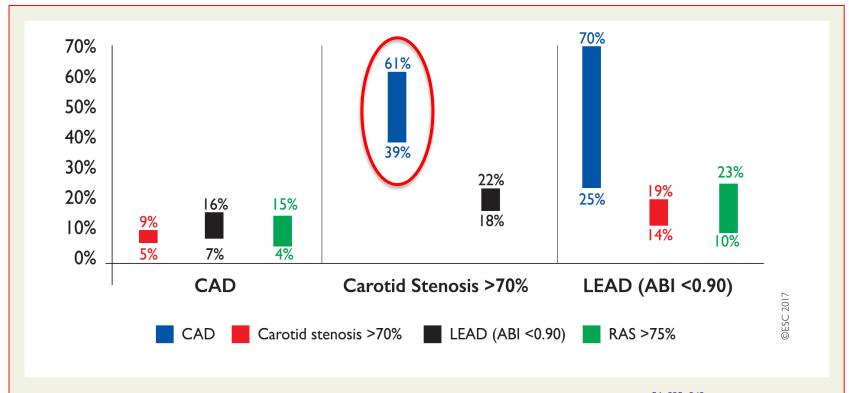
^aClass of recommendation. ^bLevel of evidence.

See Table 4.

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

Recommendation on screening for coronary artery disease in patients with carotid disease

	Class ^a	Level ^b
In patients undergoing elective CEA, preoperative CAD screening, including coronary angiography, may be considered. 382,383	IIb	В


CAD = coronary artery disease; CEA = carotid endarterectomy.

^aClass of recommendation.

^bLevel of evidence.

2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)

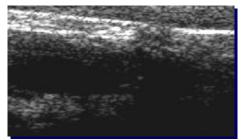
Figure 8 Reported rate ranges of other localizations of atherosclerosis in patients with a specific arterial disease.^{51, 335–343} The graph reports the rates of concomitant arterial diseases in patients presenting an arterial disease in one territory (e.g. in patients with CAD, 5 - 9% of cases have concomitant carotid stenosis >70%). ABI = ankle-brachial index; CAD = coronary artery disease; LEAD = lower extremity artery disease; RAS = renal artery stenosis.

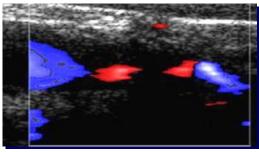
Combined carotid and coronary artery disease in need of treatment......

Different strategies

Totally Surgical
CEA plus CABG
PCI plus CEA

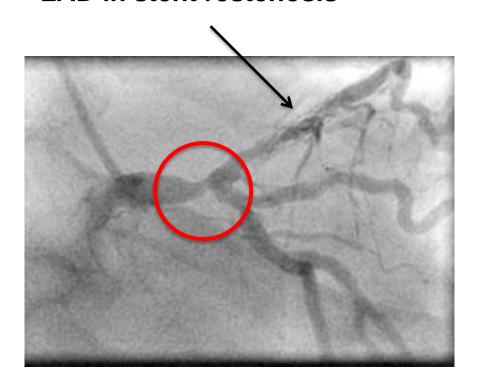
Staged or
Simultaneous

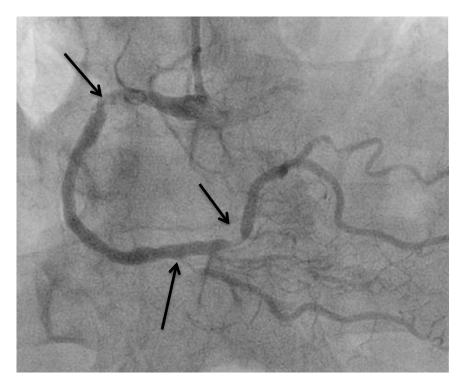

Totally
Endovascular
CAS plus PCI


F.Castriota

Patients with combined carotid and coronary artery disease

First Clinical Presentation: recurrent TIAs..

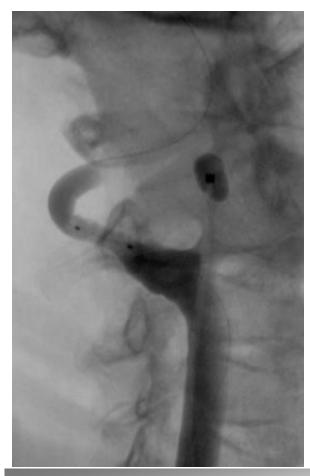



Echo-Doppler evaluation: Carotid anechoic plaque with GSM < 25

Severe, soft lesion; very tortuous ICA

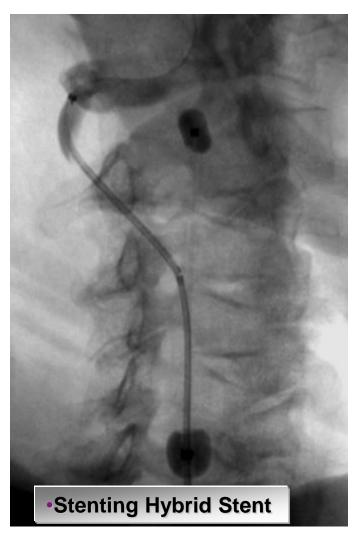
Multiple CV risk factors; Diabetes; Previous PCI LAD\ACS; Stable Angina

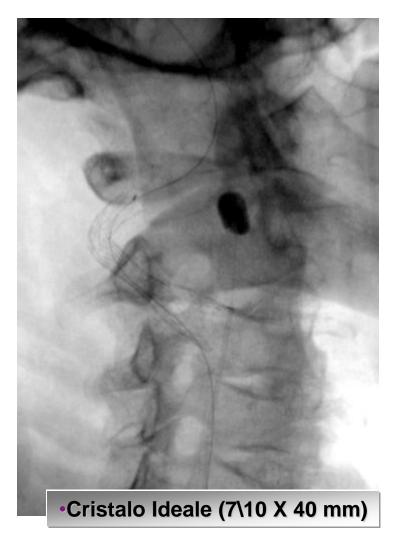
Critical distal left main stenosis LAD in stent restenosis

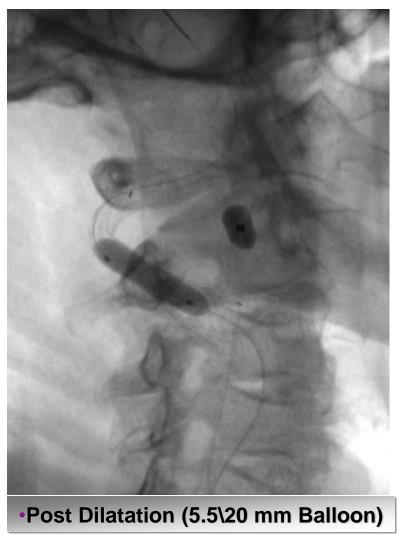


Multiple lesions of Right Coronary

Hybrid <u>staged</u> treatment: first step CAS




Inflation of Distal BalloonECA


Inflation of Proximal BalloonPre-Dilatation under flow blockage

Hybrid <u>staged</u> treatment: first step CAS

Hybrid <u>staged</u> treatment: first step CAS

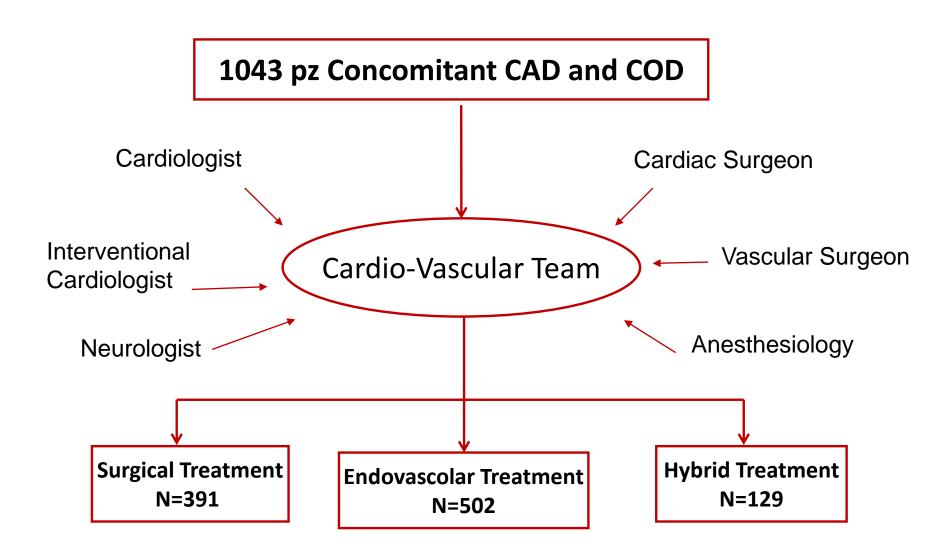
Hybrid <u>staged</u> treatment: second step CABG

3 weeks later "off pump" CABG

- LIMA on LAD
- •Saphenous vein graft on marginal branch, distal Right Coronary and PDA.

Clopdidogrel was discontinued 5 days before surgery, after a ultrasound evaluation showing a good flow inside the stent

Patient discharge after 9 days without complications



The gap between vascular interventions and vascular medicine

Flavio Ribichini^{1*}, MD; Fabrizio Tomai², MD; Fausto Castriota³, MD; Paolo Russo⁴, MD; Bernhard Reimers⁵, MD; for the Finalised Research In ENDovascular Strategies (FRIENDS) study group

1. Department of Medicine, University of Verona, Verona, Italy; 2. Department of Cardiovascular Sciences, European Hospital, Rome, Italy; 3. Cardiovascular Unit, GVM Care and Research Villa Maria Cecilia Hospital, Cotignola, Italy; 4. GVM Care and Research Cardiovascular Unit, Villa Maria Pia Hospital, Turin, Italy; 5. Division of Cardiology Ospedale Civile, Mirano, Italy

The FRIENDS Study.....

EuroIntervention

Clinical outcome after endovascular, surgical or hybrid revascularisation in patients with combined carotid and coronary artery disease: the Finalised Research In ENDovascular Strategies Study Group (FRIENDS)

Flavio Ribichini¹, MD; Fabrizio Tomai², MD; Bernhard Reimers³,MD; Paolo Russo⁴, MD; Raoul Borioni², MD; Daniela Spartà¹, MD; Andrea Pacchioni³, MD; Gabriele Pesarini¹, MD; Barbara Spagnolo⁵, MD; Giovanni De Persio², MD; Alberto Cremonesi⁵, MD; Fausto Castriota⁵, MD

Early and Long-Term Outcomes After Combined Percutaneous Revascularization in Patients With Carotid and Coronary Artery Stenoses

Fabrizio Tomai, MD,* Gabriele Pesarini, MD,† Fausto Castriota, MD,‡
Bernhard Reimers, MD,§ Leonardo De Luca, MD, PhD,* Giovanni De Persio, MD,*
Daniela Spartà, MD,† Cristina Aurigemma, MD,* Andrea Pacchioni, MD,§
Barbara Spagnolo, MD,‡ Alberto Cremonesi, MD,‡ Flavio Ribichini, MD,†
for the FRIENDS (Finalized Research in Endovascular Strategies) Study Group

JACC: CARDIOVASCULAR INTERVENTIONS, VOL. 4, NO. 5, 2011
MAY 2011:560-8

The FRIENDS Study

European Heart Journal Supplements (2015) 17 (Supplement A), A23-A28 The Heart of the Matter doi:10.1093/eurheartj/suv008

Early and late clinical outcomes of endovascular, surgical, and hybrid revascularization strategies of combined carotid and coronary artery diseases: the FRIENDS study group (Finalized Research In ENDovascular Strategies)

Fausto Castriota¹*, Fabrizio Tomai², Gioel Gabrio Secco¹, Bernhard Reimers³, Anna Piccoli⁴, Giovanni De Persio², Gabriele Pesarini⁴, Giulia Schiavina⁵, Raoul Borioni², Andrea Pacchioni³, Alberto Cremonesi¹, Corrado Vassanelli⁴, and Flavio Ribichini⁴

¹Cardiovascular Unit, Maria Cecilia Hospital, GVM Care & Research, via Corriera 1, Cotignola, RA 48010, Italy

²Department of Cardiovascular Sciences, European Hospital, Rome, Italy

³Division of Cardiology, Ospedale Civile di Mirano, Mirano, Italy

⁴Department of Medicine, University of Verona, Verona, Italy

⁵Clinical Research Unit, E.S. Health Science Foundation, Cotignola, Italy

FRIENDS Study: CLINICAL PRESENTATION

CARDIOVASCULAR DISEASE	862 (82.6%)
<u>Acute</u>	227 (21.7%)
NSTEMI	124 (11.8%)
Unstable Angina	88 (8.4%)
STEMI	15 (1.4%)
<u>Chronic</u>	635 (60.8%)
Stable Angina	561 (53.7%)
Indication to CABG	6 (0.5%)
Others *	68 (6.5%)
NEUROLOGICAL DISEASE	181 (17.3%)
<u>Acute</u>	23 (2.2%)
TIA	10 (0.9%)
Stroke	13 (1.2%)
<u>Chronic</u>	158 (15.1%)
Symptomatic	84 (8.0%)
Asymptomatic (elective PTA)	74 (7.0%)

^{* :} valvular heart disease, cardiomyopathy, heart failure of unknown cause, major arrhythmias.

FRIENDS Study: BASELINE CLINICAL CHARACTERISTICS

	Surgical n=391	Endovascular n=502	Hybrid n=129	p1	p2
Age years±SD	70.8±8.6	73.1±8.0	71.5±8.1	<0.001	<0.001
Male Gender	296 (75.7%)	367 (73.1%)	90 (69.8%)	ns	ns
Hypertension	341 (87.2%)	442 (88.0%)	107 (82.9%)	ns	ns
Diabetes	168 (43.0%)	168 (33.5%)	46 (35.7%)	<0.01	ns
CRF	118 (30.3%)	112 (22.4%)	24 (18.4%)	<0.01	ns
LVEF	56.1±8.0	54.1±8.6	51.3±8.9	<0.001	<0.001
Bilateral COD	30 (7.7%)	97 (19.4%)	42 (32.9%)	<0.001	<0.001
Multivessel CAD	264 (67.5%)	235 (46.8%)	89 (69.0%)	<0.001	<0.001
Diagnosis ACS	77 (19.7%)	110 (21.9%)	36 (27.9%)	ns	ns
Neurological Symptoms	63 (16.1%)	86 (17.2%)	43 (33.3%)	ns	<0.001

FRIENDS Study: PERIPROCEDURAL EVENTS

	SURGICAL	ENDOVASCULAR	HYBRID	P1	P2
	n=391	n=502	n=129		
Cardiovascular Death	9 (2.3%)	1 (0.2%)	0 (0%)	<0.001	0.82
AMI	2 (0.5%)	5 (0.9%)	2 (1.6%)	0.47	0.57
Stroke	2 (0.5%)	10 (2.0%)	1 (0.8%)	0.03	0.30
Major Bleedings	15 (3.8%)	28 (5.5%)	18 (13.9%)	0.33	0.001

FRIENDS Study: Events at 1-year follow-up and primary end point in the three groups (hierarchical)

	SURGICAL	ENDOVASCULAR	HYBRID	P1	P2
	n=391	n=502	n=129		
Cardiovascular Death	14 (3.6%)	8 (1.6%)	3 (2.3%)	0.05	0.63
Non Cardiovascular Death	3 (0.8%)	5 (1.0%)	1 (0.8%)	0.7	0.8
AMI	4 (1.0%)	10 (2.0%)	2 (1.6%)	0.2	0.7
Stroke	2 (0.5%)	10 (2.0%)	1 (0.8%)	0.03	0.2
EPP (Death, AMI, Stroke)	23 (5.8%)	33 (6.5%)	6(4.6%)	0.6	0.4

Research Article

Long-Term Outcomes of Coronary and Carotid Artery Disease Revascularization in the FRIENDS Study

Fabrizio Tomai, Anna Piccoli, Fausto Castriota, Luca Weltert, Bernhard Reimers, Gabriele Pesarini, Raoul Borioni, Giovanni De Persio, Roberto Nerla, Andrea Pacchioni, Alberto Cremonesi, and Flavio Ribichini

⁵Division of Cardiology, Ospedale Civile di Mirano, Italy

¹Cardiovascular Department, European Hospital, Rome, Italy

²Division of Cardiology, University of Verona, Italy

³Cardiovascular Department of Humanitas Gavazzeni Hospital, Bergamo, Italy

⁴Division of Cardiology, Istituto Clinico Humanitas, Rozzano, Italy

The FRIENDS study

Table 3: Unadjusted comparison of primary and secondary endpoints for the 3 groups.

	Surgical	Endovascula	r Hybrid	Surgical vs. Endovascular	Surgical vs. Hybrid	Endovascular vs. Hybrid	P value
		Event rates, n	(%)		HR (95% CI)		
Any death	43 (11.3%)	72 (14.5%)	21 (16.9%)	0.8 (0.6-1.2)	0.6 (0.3-1.1)	0.7 (0.4-1.3)	.173
Non CV dear	th 17 (4.5%)	34 (6.9%)	11 (8.9%)	0.7 (0.4-1.2)	0.4 (0.2-1.1)	0.6 (0.3-1.4)	.102
CV death	26 (6.8%)	38 (7.7%)	10 (8.2%)	0.9 (0.6-1.5)	0.8 (0.4-1.7)	0.9 (0.4-1.8)	.829
MI	12 (3.3%)	23 (4.7%)	11 (9.1%)	0.7 (0.4-1.4)	0.3 (0.1-0.9)	0.5 (0.2-1.2)	.019*
Stroke	6 (1.6%)	13 (2.6%)	3 (2.5%)	0.7 (0.3-1.7)	0.6 (0.1-2.5)	0.8 (0.3-3.4)	.669
CKD/haemo	dialysis 19 (5.2%)	35 (7.1%)	15 (12.5%)	0.7 (0.4-1.7)	0.7 (0.4-1.7)	0.6 (0.3-1.2)	.020*
MACCE	37 (10.1%)	64 (13.0%)	16 (13.2%)	0.9 (0.6-1.4)	0.6 (0.3-1.2)	0.7 (0.4-1.3)	.257
All events	58 (15.9%)	117 (23.8%)	32 (26.5%)	0.8 (0.6-1.1)	0.5 (0.3-0.8)	0.7 (0.4-1.1)	.006*

Variable Name	Cox Univariate HR	Univariate Significance	Cox Multivariate HR	Multivariate Significance
Gender	1.017 (0.568-1.821)	0.954		
Age	1.034 (1.009-1.060)	0.007	1.028 (1.001-1.055)	0.041
Hypertension	0.644 (0.404-1.025)	0.064		
Diabetes Mellitus	1.274 (0.885-1.834)	0.193		
Chronic Kidney Disease	1.353 (0.869-2.106)	0.181		
Left Ventricular Ejection Fraction	0.963 (0.945-0.982)	0.000	0.963 (0.945-0.982)	0.000
Bilateral Carotid Obstructive Disease	1.714 (1.126-2.611)	0.012		
Multivessel Coronary Artery Disease	1.459 (1.003 -2.123)	0.048		
Kind of Treatment (Surgery, Endovascual, Hybrid)	1-206 (0.901-1621)	0.206		

The FRIENDS study

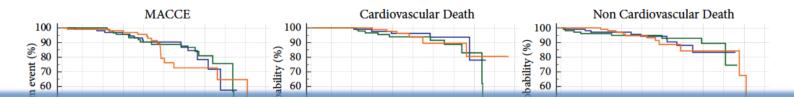
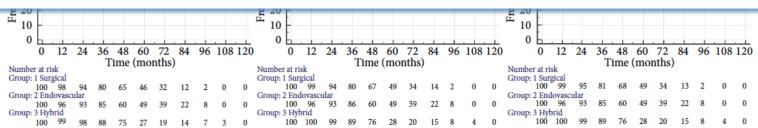



TABLE 6: Propensity-adjusted three-group comparison for the primary and secondary endpoints.

	0	Endovascular Event rates, n (%	Hybrid	Surgical vs. Endovascular	Surgical vs. Hybrid	Endovascular vs. Hybrid	P value
	E	event rates, n (%				/	1 / 11/11/0
			o <i>)</i>		HR (95% CI)		
Any death 1	14 (14%)	18 (18%)	17 (17%)	0.9 (0.4-1.8)	0.9 (0.5-1.8)	1.1 (0.6-2.2)	.920
Non CV death	9 (9%)	8 (8%)	11 (11%)	1.2 (0.5-3.1)	0.9 (0.4-2.4)	0.8 (0.3-2.0)	.872
CV death	5 (5%)	10 (10%)	6 (6%)	0.6 (0.2-1.7)	0.9 (0.3-2.8)	1.6 (0.6-4.5)	.499
MI	7 (7%)	4 (4%)	11 (11%)	1.9 (0.7-5.3)	0.7 (0.2-2.0)	0.4 (0.1-1.1)	.193
Stroke	2 (2%)	3 (3%)	3 (3%)	0.8 (0.1-4.1)	0.6 (0.1-3.7)	0.8 (0.2-4.4)	.885
CKD/haemodialysis	6 (6%)	6 (6%)	14 (14%)	1.0 (0.4-2.7)	0.5 (0.2-1.2)	0.5 (0.2-1.2)	.093
MACCE 1	13 (13%)	15 (15%)	16 (16%)	1.0 (0.5-2.1)	0.9 (0.4-1.9)	0.9 (0.4-1.8)	.946
All events 2	24 (24%)	26 (26%)	30 (30%)	0.9 (0.5-1.6)	0.9 (0.5-1.5)	0.8 (0.5-1.4)	.690

 $CKD = chronic\ kidney\ disease;\ CV = cardiovascular;\ MACCE = Major\ Adverse\ Cardiac\ and\ Cerebrovascular\ Events;\ MI =\ myocardial\ infarction.$

Conclusion

The correct management of patients with multilevel vascular disease is particularly challenging and should be tailored according to a comprehensive medical evaluation and <u>LOCAL EXPERIENCE</u> rather than focusing on a determined form of intervention

Thank You for your attention